Advertisements
Advertisements
Question
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
Solution
Let A (x, y) be the point on the curve y = f(x).
Then slope of the tangent to the curve at point A is `"dy"/"dx"`.
According to the given condition,
`"dy"/"dx" = "x" + 3"y" - 1`
∴ `"dy"/"dx" - 3"y" = "x - 1"` ....(1)
This is the linear differential equation of the form
`"dy"/"dx" + "Py" = "Q"`, where P = - 3 and Q = x - 1
∴ I.F. = `"e"^(int "P dx") = "e"^(int - 3"dx") = "e"^(- 3"x")`
∴ the solution of (1) is given by
`"y" * ("I.F.") = int "Q" * ("I.F.") "dx" + "c"`
∴ `"y" * "e"^(- 3"x") = int ("x - 1") * "e"^(-3"x") "dx" + "c"`
∴ `"e"^(- 3"x") * "y" = ("x - 1") int "e"^(- 3"x") - int ["d"/"dx" ("x - 1") * int "e"^(- 3"x") "dx"] "dx" + "c"_1`
∴ `"e"^(- 3"x") * "y" = ("x - 1") * "e"^(- 3"x")/-3 - int 1 * "e"^(- 3"x") * "y"/-3 "dx" + "c"_1`
∴ `"e"^(- 3"x") * "y" = - 1/3 ("x - 1") * "e"^(- 3"x") + 1/3 int "e"^(- 3"x") "dx" + "c"_1`
∴ `"e"^(- 3"x") * "y" = - 1/3 ("x - 1") "e"^(- 3"x") + 1/3 * "e"^(- 3"x")/-3 + "c"_1`
∴ `"e"^(- 3"x") * "y" = - 1/3 ("x - 1")"e"^(- 3"x") - 1/9 "e"^(- 3"x") + "c"_1`
∴ 9y = - 3(x - 1) - 1 + 9`"c"_1 * e^("3x")`
∴ 9y + 3(x - 1) + 1 = `9"c"_1 * e^("3x")`
∴ 9y + 3x - 3 + 1 = `9"c"_1 * e^("3x")`
∴ 3(x + 3y) = 2 + `9"c"_1 * e^("3x")`
∴ 3(x + 3y) = 2 + `"c" * e^("3x")` where c = 9c1 ....(2)
This is the general equation of the curve.
But the required curve is passing through the origin (0, 0).
∴ by putting x = 0 and y= 0 in (2), we get
0 = 2 + c
∴ c = - 2
∴ from (2), the equation of the required curve is
3(x + 3y) = 2 - 2`e^("3x")`
i.e. 3(x + 3y) = 2(1 - `e^("3x")`).
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`dy/dx + 2y = sin x`
For the differential equation, find the general solution:
`x dy/dx + y - x + xy cot x = 0(x != 0)`
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.
If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
Integrating factor of `dy/dx + y = x^2 + 5` is ______
Which of the following is a second order differential equation?
The equation x2 + yx2 + x + y = 0 represents
The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is
Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.
If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.