मराठी

For the differential equation given, find a particular solution satisfying the given condition: dydx-3ycotx=sin2x;y=2 when x=π2 - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`

बेरीज

उत्तर

The given equation is 

`dy/dx - 3 y cot x = sin 2x`                ....(1)

Which is a linear equation of the type

`dy/dx + Py = Q`

Here P = - 3cot x and Q =  sin 2x

∴ `intP dx = -3 int cot x  dx = -3 log |sin x|`

∴ `I.F. = e^(-3log|sin x|)`

`= e^(log cosec^3 x)`

`= cosec^3 x`

∴ The solution is `y. (I.F.) = int Q. (I.F.)  dx + C`

`y cosec^3 x = int sin2x cosec^3x dx + C`

`= int (2 sin x cos x)/(sin^3 x)  dx + C`

`= 2 int cosec x cot x  dx + C`

`= - 2 cosec  x  +C`

⇒ y = -2 sin2 x + C sin3 x                          ....(2)

When `x = pi/2, y = 2`

∴ `2 = -2 sin^2  pi/2 + C sin^3  pi/2`

⇒ 2 = -2 (1)2 + C (1)3

⇒ C = 2 + 2

⇒ C = 4

Putting in (2), we get

y = - 2sin2 x + 4 sin3 x

⇒ y = 4 sin3 x - 2 sin x

Which is the required solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise 9.6 [पृष्ठ ४१४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise 9.6 | Q 15 | पृष्ठ ४१४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


(x + tan y) dy = sin 2y dx


\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[x\frac{dy}{dx} + 2y = x \cos x\]

Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×