हिंदी

Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix: [2003-10-731] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`

योग

उत्तर

Let A = `[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`

As every element above the diagonal is zero in matrix A.

∴ A is a lower triangular matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants and Matrices - Exercise 4.4 [पृष्ठ ८३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Determinants and Matrices
Exercise 4.4 | Q 2. (vi) | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of x, y, and z from the following equation:

`[(4,3),(x,5)] = [(y,z),(1,5)]`


`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.


if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`


If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N


if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'


Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`


Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.


If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.


If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[9   sqrt(2)  -3]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


Identify the following matrix is singular or non-singular?

`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`


Find k if the following matrix is singular:

`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.


Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


State whether the following statement is True or False:

If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2 


If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______


If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______


AB = AC ⇒ B = C for any three matrices of same order.


For any square matrix A, AAT is a ____________.


The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]`  is a ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


If a matrix A is both symmetric and skew symmetric then matrix A is ____________.


A = `[a_(ij)]_(m xx n)` is a square matrix, if


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.


A matrix which is both symmetric and skew symmetric matrix is a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×