मराठी

Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive. - Mathematics

Advertisements
Advertisements

प्रश्न

Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is False.

Explanation:

Given that, R = {(3, 1), (1, 3), (3, 3)} be defined on the set A = {1, 2, 

Since (1, 1) ∉ R, R is not reflexive.

Since (3, 1) ∈ R ⇒ (1, 3) ∈ R, R is symmetric.

Since, (1, 3) ∈ R, (3, 1) ∈ R

But (1, 1) ∉ R

Hence, R is not transitive.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations And Functions - Exercise [पृष्ठ १७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 1 Relations And Functions
Exercise | Q 53 | पृष्ठ १७

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}


Show that each of the relation R in the set A= {x  ∈ Z : 0 ≤ x  ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?


If = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?


Give an example of a relation which is transitive but neither reflexive nor symmetric?


m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?


Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.


Write the smallest reflexive relation on set A = {1, 2, 3, 4}.


Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.


Define a reflexive relation ?


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.


Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1  "is similar to"  Delta_2}`. Which triangles belong to the same equivalence class?


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2  "where"  "L"_1, "L"_2 in "L" }` which of the following is true?

If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is


If A is a finite set consisting of n elements, then the number of reflexive relations on A is


A relation in a set 'A' is known as empty relation:-


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×