मराठी

M is Said to Be Related to N If M and N Are Integers and M − N is Divisible by 13. Does this Define an Equivalence Relation? - Mathematics

Advertisements
Advertisements

प्रश्न

m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?

बेरीज

उत्तर

We observe the following properties of relation R.

Let  R={(m, n) : m, Z : mn is divisible by 13}

Relexivity : Let m be an arbitrary element of Z. Then,

∈ R

⇒ m0 × 13

⇒ mm is divisible by 13

⇒ (m, m) is reflexive on Z.

Symmetry: Let (m, n∈ R. Then,

mn is divisible by 13

⇒ m13p

Here, ∈ Z

⇒ nm=13 (p) 

Here, ∈ Z

⇒ nm is divisible by 13

⇒ (n, m)∈ R for all m, ∈ 

So, R is symmetric on Z.

Transitivity: Let (m, n) and (n, o)R

⇒ mn and no are divisible by 13

⇒ mn=13p and − =13q for some p, ∈ Z

Adding the above two, we get

  m− n+n=1313q

⇒ m=13 (p+q)

Here, p+∈ Z

⇒ mo is divisible by 13

(m, o∈ R for all m, ∈ Z

So, R is transitive on Z.

Hence, R is an equivalence relation on Z.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations - Exercise 1.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 1 Relations
Exercise 1.2 | Q 6 | पृष्ठ २६

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.


Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.


Given an example of a relation. Which is Reflexive and transitive but not symmetric.


Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.


Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is

(A) 1

(B) 2

(C) 3

(D) 4


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.


Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.


Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.


If R is a symmetric relation on a set A, then write a relation between R and R−1.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.


Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.


Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


Mark the correct alternative in the following question:

The relation S defined on the set R of all real number by the rule aSb if a  b is _______________ .


Mark the correct alternative in the following question:

Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .


Mark the correct alternative in the following question:

Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m  L. Then, R is ______________ .


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective


Give an example of a map which is neither one-one nor onto


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3`  is an irrational number, then relation S is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wishes to form all the relations possible from B to G. How many such relations are possible?

Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×