Advertisements
Advertisements
प्रश्न
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
उत्तर
We observe the following properties of R.
Reflexivity :
Let a be an arbitrary element of Z. Then,
a ∈ R
Clearly, a+a = 2a is even for all a ∈ Z.
⇒ (a, a) ∈ R for all a ∈ Z
So, R is reflexive on Z.
Symmetry :
Let (a, b) ∈ R
⇒ a+b is even
⇒ b+a is even
⇒ (b, a) ∈ R for all a, b ∈ Z
So, R is symmetric on Z.
Transitivity :
Let (a, b) and (b, c) ∈ R
⇒ a+b and b+c are even
Now, let a+b = 2x for some x ∈ Z
and b+c = 2y for some y ∈ Z
Adding the above two, we get
a+2b +c = 2x + 2y
⇒ a+c = 2 (x+y−b), which is even for all x, y, b ∈ Z
Thus, (a, c) ∈ R
So, R is transitive on Z.
Hence, R is an equivalence relation on Z
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.
Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:
For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
If A = {a, b, c}, B = (x , y} find A × B.
If A = {a, b, c}, B = (x , y} find B × B.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).
R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, symmetric and transitive
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.
An integer m is said to be related to another integer n if m is a integral multiple of n. This relation in Z is reflexive, symmetric and transitive.
Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?
R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is ____________.
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- The above-defined relation R is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Mr. Shyam exercised his voting right in General Election-2019, then Mr. Shyam is related to which of the following?
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.
A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-
Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.