Advertisements
Advertisements
प्रश्न
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).
उत्तर
A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}
B ∪ C = {4, 5, 6}
∴ A × (B ∪ C)
= {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)}
APPEARS IN
संबंधित प्रश्न
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.
Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:
For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Test whether the following relation R1 is (i) reflexive (ii) symmetric and (iii) transitive :
R1 on Q0 defined by (a, b) ∈ R1 ⇔ a = 1/b.
The following relation is defined on the set of real numbers.
aRb if a – b > 0
Find whether relation is reflexive, symmetric or transitive.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.
If A = {a, b, c}, B = (x , y} find A × A.
In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?
The relation > (greater than) on the set of real numbers is
Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.