मराठी

The following defines a relation on N:x + 4y = 10 x, y ∈ N.Determine which of the above relations are reflexive, symmetric and transitive. - Mathematics

Advertisements
Advertisements

प्रश्न

The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.

बेरीज

उत्तर

x + 4y = 10; x, y ∈ N

R = {(x, y): x + 4y = 10; x, y ∈ N}

R = {(2, 2), (6, 1)}

It’s clearly seen (1, 1) ∉ R

Hence, R is not symmetric.

(x, y) ∈ R ⇒ x + 4y = 10

And (y, z) ∈ R ⇒ y + 4z = 10

⇒ x – 16z = – 30

⇒ (x, z) ∉ R

Therefore, R is not transitive.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations And Functions - Exercise [पृष्ठ १२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 1 Relations And Functions
Exercise | Q 22. (iv) | पृष्ठ १२

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


Given an example of a relation. Which is Reflexive and transitive but not symmetric.


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.


Define a symmetric relation ?


If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.


A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(xy) : y is one half of xxy ∈ A} is a relation on A, then write R as a set of ordered pairs.


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


In the set Z of all integers, which of the following relation R is not an equivalence relation ?


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).


Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B


Give an example of a map which is not one-one but onto


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.


The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.


A relation in a set 'A' is known as empty relation:-


If f(x + 2a) = f(x – 2a), then f(x) is:


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Read the following passage:

An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
Let B = {b1, b2, b3} and G = {g1, g2}, where B represents the set of Boys selected and G the set of Girls selected for the final race.

Based on the above information, answer the following questions:

  1. How many relations are possible from B to G? (1)
  2. Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
  3. Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
    OR
    A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)

Statement 1: The intersection of two equivalence relations is always an equivalence relation.

Statement 2: The Union of two equivalence relations is always an equivalence relation.

Which one of the following is correct?


If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×