मराठी

Give an example of a map which is not one-one but onto - Mathematics

Advertisements
Advertisements

प्रश्न

Give an example of a map which is not one-one but onto

बेरीज

उत्तर

Let f: R → `[0, oo)`, be a mapping defined by f(x) = |x|

Then, it’s clearly seen that f(x) is not one-one as f(2) = f(–2).

But |x| ≥ 0, so range is `[0, oo].`

Therefore, f(x) is onto.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations And Functions - Exercise [पृष्ठ १२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 1 Relations And Functions
Exercise | Q 19. (ii) | पृष्ठ १२

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Show that the relation R defined in the set A of all polygons as R = {(P1P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?


Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4


The following relation is defined on the set of real numbers.

aRb if 1 + ab > 0

Find whether relation is reflexive, symmetric or transitive.


Give an example of a relation which is reflexive and symmetric but not transitive ?


Give an example of a relation which is transitive but neither reflexive nor symmetric?


Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.


Let A = {abc} and the relation R be defined on A as follows: R = {(aa), (bc), (ab)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.


If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.


Define a reflexive relation ?


Define a symmetric relation ?


A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(xy) : y is one half of xxy ∈ A} is a relation on A, then write R as a set of ordered pairs.


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .


Let R be the relation over the set of all straight lines in a plane such that  l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .


Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Mark the correct alternative in the following question:

The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .


Mark the correct alternative in the following question:

Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m  L. Then, R is ______________ .


Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation. 


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).


Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1  "is similar to"  Delta_2}`. Which triangles belong to the same equivalence class?


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


If f(x + 2a) = f(x – 2a), then f(x) is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×