Advertisements
Advertisements
प्रश्न
Give an example of a map which is one-one but not onto
उत्तर
Let f: N → N, be a mapping defined by f(x) = x2
For f(x1) = f (x2)
Then, `x_1^2 = x_2^2`
x1 = x2 ......(Since x1 + x2 = 0 is not possible)
Further ‘f’ is not onto, as for 1 ∈ N, there does not exist any x in N such that f(x) = 2x + 1.
APPEARS IN
संबंधित प्रश्न
Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.
Define a symmetric relation ?
For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
If A = {a, b, c}, B = (x , y} find A × A.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).
For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive
The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- The above-defined relation R is ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:
The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is
If A is a finite set consisting of n elements, then the number of reflexive relations on A is
A relation in a set 'A' is known as empty relation:-