Advertisements
Advertisements
प्रश्न
Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation.
उत्तर
The relation R on Z is given by R = {(a,b) :2divides a - b}.
We observe the following properties of relation R.
Refelxivity : For any a ∈ Z
a - a = 0 = 0 × 2
⇒ 2 divides a - a
⇒ (a, a) ∈ R
So, R is a reflexive relation on Z.
Symmetry: Let a,b ∈ Z be such that
(a,b) ∈ R
⇒ 2 divides a - b
⇒ a - b = 2λ for some λ ∈ Z
⇒ b - a = 2(- λ ),where - λ ∈ Z
⇒ 2 divides b - a
⇒ (b, a) ∈ R
Thus, (a,b) ∈ R ⇒ (b, a) ∈ R. So, R is a symmetric relation on Z.
Transitivity: Let a,b, c ∈ Z be such that (a,b) ∈ R and (b, c) ∈ R. Then,
(a,b) ∈ R ⇒ 2 divides a - b ⇒ a - b = 2λ for some λ ∈ Z
and (b, c) ∈ R ⇒ 2 divides b - c ⇒ b - c = 2 μ for some μ ∈ Z
a - b + b - c = 2( λ + μ )
2 divides a - c
⇒ (a, c) ∈ R
Thus, (a,b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R.
So, R is a transitive relation on Z.
Since R is symmetric and transitive
reflexive therefore an equivalence relation
Hence, R is a transitive relation on Z.
APPEARS IN
संबंधित प्रश्न
Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:
R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5
The following relation is defined on the set of real numbers.
aRb if 1 + ab > 0
Find whether relation is reflexive, symmetric or transitive.
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
Write the identity relation on set A = {a, b, c}.
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?
Let R be the relation over the set of all straight lines in a plane such that l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
Mark the correct alternative in the following question:
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b T. Then, R is ____________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
If f (x) = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).
Give an example of a map which is not one-one but onto
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.
Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.
Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1 "is similar to" Delta_2}`. Which triangles belong to the same equivalence class?
Find: `int (x + 1)/((x^2 + 1)x) dx`
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?
There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:
Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].