मराठी

Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.

बेरीज

उत्तर

(i) Reflexive:

Let A = {1, 2, 3}.

A relation R on A is defined as R = {(1, 2), (2, 1)}.

It is seen that (1, 1), (2, 2), and (3, 3) ∉R.

∴ R is not reflexive.

(ii) Symmetric:

Now, as (1, 2) ∈ R and (2, 1) ∈ R, 

 ∴ R is symmetric.

(iii) Transitive:

Now, (1, 2) and (2, 1) ∈ R

However,

(1, 1) ∉ R

∴ R is not transitive.

Hence, R is symmetric but neither reflexive nor transitive.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.1 | Q 6 | पृष्ठ ६

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}


Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.


Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is father of and y}


Give an example of a relation which is reflexive and symmetric but not transitive ?


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.


Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.


Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.


Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Define a symmetric relation ?


A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(xy) : y is one half of xxy ∈ A} is a relation on A, then write R as a set of ordered pairs.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


Let R be the relation over the set of all straight lines in a plane such that  l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


Mark the correct alternative in the following question:

Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .


Mark the correct alternative in the following question:

For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


Give an example of a map which is neither one-one nor onto


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


Total number of equivalence relations defined in the set S = {a, b, c} is ____________.


The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.

If A is a finite set consisting of n elements, then the number of reflexive relations on A is


Which of the following is/are example of symmetric


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


Read the following passage:

An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
Let B = {b1, b2, b3} and G = {g1, g2}, where B represents the set of Boys selected and G the set of Girls selected for the final race.

Based on the above information, answer the following questions:

  1. How many relations are possible from B to G? (1)
  2. Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
  3. Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
    OR
    A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)

Statement 1: The intersection of two equivalence relations is always an equivalence relation.

Statement 2: The Union of two equivalence relations is always an equivalence relation.

Which one of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×