Advertisements
Advertisements
प्रश्न
Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].
उत्तर
Let (a, b) be an arbitrary element of N × N.
Then, (a, b) ∈ N × N and a, b ∈ N
We have, ab = ba; (As a, b ∈ N and multiplication is commutative on N)
`\implies` (a, b) R (a, b), according to the definition of the relation R on N × N
Thus (a, b) R (a, b), ∀ (a, b) ∈ N × N.
So, R is reflexive relation on N × N.
Let (a, b), (c, d) be arbitrary elements of N × N such that (a, b) R (c, d).
Then, (a, b) R (c, d) `\implies` ad = bc `\implies` bc = ad; (changing LHS and RHS)
`\implies` cb = da; (As, a, b, c, d ∈ N and multiplication is commutative on N)
`\implies` (c, d) R (a, b); according to the definition of the relation R on N × N
Thus (a, b) R (c, d) `\implies` (c, d) R (a, b)
So, R is symmetric relation on N × N.
Let (a, b), (c, d), (e, f) be arbitrary elements of N × N such that (a, b) R (c, d) and (c, d) R (e, f).
Then `{:((a, b) R (c, d) \implies ad = bc),((c, d) R (e, f) \implies cf = de):}} \implies` (ad) (cf) = (bc) (de) `\implies` af = be
`\implies` (a, b) R (e, f); (according to the definition of the relation R on N × N)
Thus (a, b) R (c, d) and (c, d) R (e, f) `\implies` (a, b) R (e, f)
So, R is transitive relation on N × N.
As the relation R is reflexive, symmetric and transitive so, it is equivalence relation on N × N.
[(2, 6)] = {(x, y) ∈ N × N : (x, y) R (2, 6)}
= {(x, y) ∈ N × N : 3x = y}
= {(x, 3x) : x ∈ N}
= {(1, 3), (2, 6), (3, 9),.........}
APPEARS IN
संबंधित प्रश्न
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y live in the same locality}
The following relation is defined on the set of real numbers. aRb if |a| ≤ b
Find whether relation is reflexive, symmetric or transitive.
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.
Give an example of a relation which is symmetric and transitive but not reflexive?
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Let C be the set of all complex numbers and C0 be the set of all no-zero complex numbers. Let a relation R on C0 be defined as
`z_1 R z_2 ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .
Show that R is an equivalence relation.
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.
If A = {a, b, c}, B = (x , y} find A × A.
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Every relation which is symmetric and transitive is also reflexive.
Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- The above-defined relation R is ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is
A relation 'R' in a set 'A' is called reflexive, if
Define the relation R in the set N × N as follows:
For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.
Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.