मराठी

If R is the Largest Equivalence Relation on a Set a and S is Any Relation on A, Then (A) R ⊂ S (B) S ⊂ R (C) R = S (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .

पर्याय

  • R ⊂ S

  • S ⊂ R

  • R = S

  • none of these

MCQ

उत्तर

S ⊂ R

Since R is the largest equivalence relation on set A,

R ⊆ A × A

Since S is any relation on A,

S ⊂ R ⊆ A × A

So, S ⊂ R

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations - Exercise 1.4 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 1 Relations
Exercise 1.4 | Q 17 | पृष्ठ ३२

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is

(A) 1

(B) 2

(C) 3

(D) 4


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :

 R = {(x, y) : x and y work at the same place}


Test whether the following relation R1 is  (i) reflexive (ii) symmetric and (iii) transitive :

R1 on Q0 defined by (a, b) ∈ R1 ⇔ = 1/b.


Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:

R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.


If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.


Let C be the set of all complex numbers and Cbe the set of all no-zero complex numbers. Let a relation R on Cbe defined as

`z_1 R  z_2  ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .

Show that R is an equivalence relation.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Define a transitive relation ?


R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


In the set Z of all integers, which of the following relation R is not an equivalence relation ?


Mark the correct alternative in the following question:

Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b  T. Then, R is ____________ .


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


If A = {a, b, c}, B = (x , y} find A × A.


Write the relation in the Roster form and hence find its domain and range:

R2 = `{("a", 1/"a")  "/"  0 < "a" ≤ 5, "a" ∈ "N"}`


Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.


Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.


A relation R on a non – empty set A is an equivalence relation if it is ____________.


Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.


Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.


Let the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12}, given by R = {(a, b) : |a – b| is a multiple of 4}. Then [1], the equivalence class containing 1, is:


A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3`  is an irrational number, then relation S is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.

If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


A relation in a set 'A' is known as empty relation:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×