मराठी

Determination of whether the following relations are reflexive, symmetric, and transitive: Relation R in the set A = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0} - Mathematics

Advertisements
Advertisements

प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}

बेरीज

उत्तर

A = {1, 2, 3,..., 13, 14}

R = {(x,y): 3x - y = 0}

∴ R = {(1,3), (2,6), (3,9), (4,12)}

R is not reflexive since (1, 2), (2, 2),...(14, 14) ∉ R

Also, R is not symmetric, as (1, 3) ∈R, but (3, 1) ∉ R.[3(3) - 1 ≠ 0]

Also, R is not transitive as (1,3), (3,9) ∈R, but (1,9) ∉ R.

[3(1) - 9 ≠ 0]

Hence R is neither reflexive, nor symmetric, nor transitive. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.1 [पृष्ठ ५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.1 | Q 1.1 | पृष्ठ ५

संबंधित प्रश्‍न

Show that each of the relation R in the set A= {x  ∈ Z : 0 ≤ x  ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.


The following relation is defined on the set of real numbers.

aRb if 1 + ab > 0

Find whether relation is reflexive, symmetric or transitive.


If = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?


Let R be a relation defined on the set of natural numbers N as
R = {(xy) : x N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.


Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.


If R and S are relations on a set A, then prove that R and S are symmetric ⇒ R ∩ S and R ∪ S are symmetric ?


Let C be the set of all complex numbers and Cbe the set of all no-zero complex numbers. Let a relation R on Cbe defined as

`z_1 R  z_2  ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .

Show that R is an equivalence relation.


Write the identity relation on set A = {a, b, c}.


Define a symmetric relation ?


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


Mark the correct alternative in the following question:

Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .


If f (x)  = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.


Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive


If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric


The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wishes to form all the relations possible from B to G. How many such relations are possible?

If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is


Read the following passage:

An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
Let B = {b1, b2, b3} and G = {g1, g2}, where B represents the set of Boys selected and G the set of Girls selected for the final race.

Based on the above information, answer the following questions:

  1. How many relations are possible from B to G? (1)
  2. Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
  3. Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
    OR
    A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)

Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×