Advertisements
Advertisements
प्रश्न
Mark the correct alternative in the following question:
The relation S defined on the set R of all real number by the rule aSb if a b is _______________ .
पर्याय
an equivalence relation
reflexive, transitive but not symmetric
symmetric, transitive but not reflexive
neither transitive nor reflexive but symmetric
उत्तर
We have,
S = {(a, b) : a b; a, b R}
Hence, The relation S defined on the set R of all real number by the rule aSb if a b is reflexive, transitive but not symmetric.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
The following relation is defined on the set of real numbers.
aRb if a – b > 0
Find whether relation is reflexive, symmetric or transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.
Defines a relation on N :
x + y = 10, x, y∈ N
Determine the above relation is reflexive, symmetric and transitive.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Let C be the set of all complex numbers and C0 be the set of all no-zero complex numbers. Let a relation R on C0 be defined as
`z_1 R z_2 ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .
Show that R is an equivalence relation.
If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.
If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : | a2- b2 | < 8}. Write R as a set of ordered pairs.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
Let A = {1, 2, 3} and B = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ________________ .
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A
Give an example of a map which is one-one but not onto
The following defines a relation on N:
x + y = 10, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.
Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.
The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2 "where" "L"_1, "L"_2 in "L" }` which of the following is true?
If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.
If A is a finite set consisting of n elements, then the number of reflexive relations on A is
Which one of the following relations on the set of real numbers R is an equivalence relation?
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.
Let R1 and R2 be two relations defined as follows :
R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and
R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______
Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.