मराठी

If F : Q → Q, G : Q → Q Are Two Functions Defined by F(X) = 2 X and G(X) = X + 2, Show that F and G Are Bijective Maps. Verify that (Gof)−1 = F−1 Og −1. - Mathematics

Advertisements
Advertisements

प्रश्न

If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.

उत्तर

Injectivity of f:
Let x and y be two elements of domain (Q), such that

f(x) = f(y)

⇒">⇒ 2x= 2y
⇒">⇒ x = y

So, f is one-one.
Surjectivity of f:
Let y be in the co-domain (Q), such that f(x) = y.

⇒ 2x = y 

⇒ `x = y/2 in Q` (domain)

⇒ is onto.
So, f is a bijection and, hence, it is invertible.

Finding f  -1:

Let f−1 (x) =y             ...(1)

⇒ x = f (y)

⇒ x = 2y

⇒ `y = x/2`

So, ` f^1 (x) = x/2`    (from (1))

njectivity of g:
Let x and y be two elements of domain (Q), such that
g (x) = g (y)

⇒">⇒  x + 2 = y + 2

⇒">⇒ x = y

So, g is one-one.

Surjectivity of g:
Let y be in the co domain (Q), such that g(x) = y.

⇒ x +2 =y

⇒ x= 2 -y ∈ Q (domain)

 ⇒ g is onto.
So, g is a bijection and, hence, it is invertible.

Finding g -1:

Let g−1(x) = y             ...(2)

⇒ x = g (y)

⇒ x = y+2

⇒ y = x − 2

So, g−1 (x) = x − 2        (From (2)

Verification of (gof)−1 = f−1 og −1:

f(x) = 2x ; g (x) = x + 2

and `f^-1 (x) = x/2 ; g^-1 (x)= x-2`

`Now, (f^-1 o  g^-1) (x) = f^-1 (g^-1)(x))  `

⇒ `(f^-1 o  g ^-1)(x) = f^-1 (x-2) `

⇒ `(f ^-1 o   g^-1) (x) = (x-2)/2 .......... (3)`

(gof) (x) = g (f(x))

= g (2x)

= 2x + 2

Let (gof)-1 (x) = y  ............ (4)

x = (gof) (y)

⇒ x = 2y +2

⇒ 2y = x - 2 

⇒ `y= (x-2)/2`

⇒` (gof)^-1 (x) = (x-2)/2`       [form (4) ....... (5) ]

from (3) and (5)

⇒ `(gof)^-1  = f^-1  o  g^-1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.4 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.4 | Q 12 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = x3 − x


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Set of ordered pair of a function ? If so, examine whether the mapping is injective or surjective :{(ab) : a is a person, b is an ancestor of a


Let A = {1, 2, 3}. Write all one-one from A to itself.


If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Raji wants to know the number of functions from A to B. How many number of functions are possible?

A function f: x → y is/are called onto (or surjective) if x under f.


If f; R → R f(x) = 10x + 3 then f–1(x) is:


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×