Advertisements
Advertisements
प्रश्न
If f : Q → Q, g : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.
उत्तर
Injectivity of f:
Let x and y be two elements of domain (Q), such that
f(x) = f(y)
⇒">⇒ 2x= 2y
⇒">⇒ x = y
So, f is one-one.
Surjectivity of f:
Let y be in the co-domain (Q), such that f(x) = y.
⇒ 2x = y
⇒ `x = y/2 in Q` (domain)
⇒ is onto.
So, f is a bijection and, hence, it is invertible.
Finding f -1:
Let f−1 (x) =y ...(1)
⇒ x = f (y)
⇒ x = 2y
⇒ `y = x/2`
So, ` f^1 (x) = x/2` (from (1))
njectivity of g:
Let x and y be two elements of domain (Q), such that
g (x) = g (y)
⇒">⇒ x + 2 = y + 2
⇒">⇒ x = y
So, g is one-one.
Surjectivity of g:
Let y be in the co domain (Q), such that g(x) = y.
⇒ x +2 =y
⇒ x= 2 -y ∈ Q (domain)
⇒ g is onto.
So, g is a bijection and, hence, it is invertible.
Finding g -1:
Let g−1(x) = y ...(2)
⇒ x = g (y)
⇒ x = y+2
⇒ y = x − 2
So, g−1 (x) = x − 2 (From (2)
Verification of (gof)−1 = f−1 og −1:
f(x) = 2x ; g (x) = x + 2
and `f^-1 (x) = x/2 ; g^-1 (x)= x-2`
`Now, (f^-1 o g^-1) (x) = f^-1 (g^-1)(x)) `
⇒ `(f^-1 o g ^-1)(x) = f^-1 (x-2) `
⇒ `(f ^-1 o g^-1) (x) = (x-2)/2 .......... (3)`
(gof) (x) = g (f(x))
= g (2x)
= 2x + 2
Let (gof)-1 (x) = y ............ (4)
x = (gof) (y)
⇒ x = 2y +2
⇒ 2y = x - 2
⇒ `y= (x-2)/2`
⇒` (gof)^-1 (x) = (x-2)/2` [form (4) ....... (5) ]
from (3) and (5)
⇒ `(gof)^-1 = f^-1 o g^-1`
APPEARS IN
संबंधित प्रश्न
Prove that the greatest integer function f: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Show that the modulus function f: R → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is − x if x is negative.
Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.
Let f: R → R be the Signum Function defined as
f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`
and g: R → R be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?
Which of the following functions from A to B are one-one and onto?
f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {a, b, c}
Classify the following function as injection, surjection or bijection : f : Z → Z given by f(x) = x2
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = x3 − x
Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2
Set of ordered pair of a function ? If so, examine whether the mapping is injective or surjective :{(a, b) : a is a person, b is an ancestor of a}
Let A = {1, 2, 3}. Write all one-one from A to itself.
If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.
Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?
Show that the logarithmic function f : R0+ → R given by f (x) loga x ,a> 0 is a bijection.
Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.
Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?
Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2x, g(x) = 1/x and h(x) = ex.
Find fog and gof if : f(x) = sin−1 x, g(x) = x2
State with reason whether the following functions have inverse :
g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}
Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`
If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).
Let f be an invertible real function. Write ( f-1 of ) (1) + ( f-1 of ) (2) +..... +( f-1 of ) (100 )
Write the domain of the real function
`f (x) = sqrt([x] - x) .`
If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).
The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]
Let
\[f : R \to R\] be a function defined by
Let
\[f : R - \left\{ n \right\} \to R\]
Let
\[f : [2, \infty ) \to X\] be defined by
\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =
Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1.
Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.
For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}
If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.
Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.
If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.
Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Raji wants to know the number of functions from A to B. How many number of functions are possible?
A function f: x → y is/are called onto (or surjective) if x under f.
If f; R → R f(x) = 10x + 3 then f–1(x) is:
Let a function `f: N rightarrow N` be defined by
f(n) = `{:[(2n",", n = 2"," 4"," 6"," 8","......),(n - 1",", n = 3"," 7"," 11"," 15","......),((n + 1)/2",", n = 1"," 5"," 9"," 13","......):}`
then f is ______.