मराठी

Let F: R → R Be the Signum Function Defined as And G: R → R Be the Greatest Integer Function Given By G(X) = [X], Where [X] is Greatest Integer Less than Or Equal To X. Then Does Fog And Gof Coincide in (0, 1]? - Mathematics

Advertisements
Advertisements

प्रश्न

Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?

उत्तर

It is given that,

fR → R is defined as f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

Also, gR → R is defined as g(x) = [x], where [x] is the greatest integer less than or equal to x.

Now, let x ∈ (0, 1].

Then, we have:

[x] = 1 if x = 1 and [x] = 0 if 0 < x < 1

:. fog(x) = `f(g(x)) = f([x]) = {(f(1), "if x = 1"),(f(0), "if x ∈(0,1)"):}` = `{(1, "if x = 1"), (0, "if x ∈ (0,1)"):}

`gof(x) = g(f(x))`

= g(1)       [x > 0]

=  [1] = 1

Thus, when x ∈ (0, 1), we have fog(x) = 0and gof (x) = 1.

Hence, fog and gof do not coincide in (0, 1].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.5 [पृष्ठ ३१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.5 | Q 18 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


If f : C → C is defined by f(x) = x4, write f−1 (1).


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


If f : {5, 6} → {2, 3} and g : {2, 3} → {5, 6} are given by f = {(5, 2), (6, 3)} and g = {(2, 5), (3, 6)}, then find fog.    [NCERT EXEMPLAR]


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


If  \[f : R \to \left( - 1, 1 \right)\] is defined by

\[f\left( x \right) = \frac{- x|x|}{1 + x^2}, \text{ then } f^{- 1} \left( x \right)\] equals

 


If  \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


Let D be the domain of the real valued function f defined by f(x) = `sqrt(25 - x^2)`. Then, write D


Which of the following functions from Z into Z are bijections?


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

A function f: x → y is said to be one – one (or injective) if:


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Find the domain of sin–1 (x2 – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×