Advertisements
Advertisements
प्रश्न
Consider the function f : R+ → [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with f -1 (y) = `(sqrt(54 + 5y) -3)/5` [CBSE 2015]
उत्तर
We have ,
f (x) = 5x2+ 6x − 9
Let y = 5x2+ 6x − 9
` = 5 (x^2 + 6/5x - 9/5)`
` = 5(x^2 + 2 xx x xx 3/5 + 9 /25 - 9/25 - 9/5)`
`= (( x + 3/5)^2 - 9/25 - 9/25)`
`=(x+ 3/5)^2 - 9/5 - 9 `
`= 5 (x + 3/5)^2 - 54/5`
⇒ `y + 54/5 = 5 (x+3/5)^2`
⇒ `(5y + 54)/25 (x + 3/5)^2`
⇒ `sqrt (5y +54)/25 = x +3/5`
⇒ `x = sqrt (5y +54)/5 - 3/5`
⇒ `x = (sqrt (5y +54)-3)/5 `
Let g (y) =` (sqrt(5y +54) -3)/5`
Now,
fog (y) = f (g (y))
= f `((sqrt (5y+54)-3)/5)`
= 5 `((sqrt (5y+54)-3)/5)^2 + 6 ((sqrt (5y+54)-3)/5) = - 9 `
`= 5 ((5y + 54 +9 - 6 sqrt (5y +54))/25) + ((6 sqrt(5y + 54) -18)/5) -9`
`= (5y + 63 - 6 sqrt (5y + 54))/5 +(6 sqrt (5y + 54)- 18)/5 -9`
=` (5y + 63 - 18 - 45) /5`
= y
= IY, Identity function
Also, gof (x) = g (f(x))
= g (5x2 + 6x - 9 )
`= (sqrt(5(5x^2 + 6x - 9)+ 54)-3)/5`
`= (sqrt(25x^2 + 30x - 45 +54) -3)/5`
`=(sqrt(25 x^2 + 30x + 9) -3)/5`
`= (sqrt((5x + 3)^2) - 3)/5`
`= (5x +3 -3)/5`
= x
= IX , Identity function
So, f is invertible .
Also, `f^-1 (y) = g (y) = (sqrt(5y +54) -3)/5`
APPEARS IN
संबंधित प्रश्न
Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?
Check the injectivity and surjectivity of the following function:
f: Z → Z given by f(x) = x2
Show that the function f: R → R given by f(x) = x3 is injective.
Set of ordered pair of a function? If so, examine whether the mapping is injective or surjective :{(x, y) : x is a person, y is the mother of x}
Let A = {1, 2, 3}. Write all one-one from A to itself.
Show that the logarithmic function f : R0+ → R given by f (x) loga x ,a> 0 is a bijection.
If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and g(x) = x2 + 5 .
Find gof and fog when f : R → R and g : R → R is defined by f(x) = x2 + 2x − 3 and g(x) = 3x − 4 .
Find fog and gof if : f (x) = |x|, g (x) = sin x .
Find fog and gof if : f(x) = sin−1 x, g(x) = x2
Let
f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`
Find fof.
Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → A, g : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.
If f : R → R is defined by f(x) = x2, find f−1 (−25).
If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).
The function
f : A → B defined by
f (x) = - x2 + 6x - 8 is a bijection if
Let \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation
If \[f\left( x \right) = \sin^2 x\] and the composite function \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to
Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is
Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto
Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not
f = {(1, 4), (1, 5), (2, 4), (3, 5)}
Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not
k = {(1,4), (2, 5)}
Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
k(x) = x2
Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto
If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.
The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.
Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let f: R → R be defined by f(x) = x2 is:
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.
Let f: R → R defined by f(x) = x4. Choose the correct answer
Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is
Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not
Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.
Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)
If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n" "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.
Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.
The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.
Write the domain and range (principle value branch) of the following functions:
f(x) = tan–1 x.
Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.