English

Let f: N → N be defined by f(n) = ,if n is odd,n is even{n+12,if n is oddn2,n is even for all n ∈ N. State whether the function f is bijective. Justify your answer. - Mathematics

Advertisements
Advertisements

Question

Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.

Sum

Solution

f: N → N is defined as f(n) =`{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}`

It can be observed that:

`f(1) = (1+1)/2 = 1` and `f(2) = 2/2 = 1`  [By definition of f]

`:. f(1) = f(2), "where " 1 != 2`

⇒ f is not one-one.

But f is onto because range of f= N

[∵ For any x EN, 2x ∈ N such that `f(2x) = ((2x)/2) = x`]

⇒ f is onto.

Hence, f is not bijective

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.2 [Page 11]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.2 | Q 9 | Page 11

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Give an example of a function which is one-one but not onto ?


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R   is   given   by   (f_1/f_2) (x) = (f_1(x))/(f_2 (x))  for all  x in R .`


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


  ` if  f : (-π/2 , π/2)` → R and g : [−1, 1]→ R be defined as f(x) = tan x and g(x) = `sqrt(1 - x^2)` respectively, describe fog and gof.


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → Ag : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.


If f : R → R is defined by f(x) = x2, write f−1 (25)


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

The function

\[f : R \to R, f\left( x \right) = x^2\]
 

Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


The function f: R → R defined as f(x) = x3 is:


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let f(1, 3) `rightarrow` R be a function defined by f(x) = `(x[x])/(1 + x^2)`, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×