Advertisements
Advertisements
Question
Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by g (x) = αx + β, then what value should be assigned to α and β
Solution
Given, g = {(1, 1), (2, 3), (3, 5), (4, 7)}
It’s seen that every element of domain has a unique image.
So, g is function.
Now, also given that g(x) = αx + β
So, we have
g(1) = α(1) + β = 1
α + β = 1 .......(i)
And, g (2) = α(2) + β = 3
2α + β = 3 .......(ii)
Solving (i) and (ii), we have
α = 2 and β = –1
Therefore, g(x) = 2x – 1
APPEARS IN
RELATED QUESTIONS
If the function f : R → R be defined by f(x) = 2x − 3 and g : R → R by g(x) = x3 + 5, then find the value of (fog)−1 (x).
Let f : W → W be defined as
`f(n)={(n-1, " if n is odd"),(n+1, "if n is even") :}`
Show that f is invertible a nd find the inverse of f. Here, W is the set of all whole
numbers.
Find gof and fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`
State with reason whether following functions have inverse
f: {1, 2, 3, 4} → {10} with
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
State with reason whether following functions have inverse g: {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}
State with reason whether following functions have inverse h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Let f: X → Y be an invertible function. Show that the inverse of f−1 is f, i.e., (f−1)−1 = f.
Consider f: `R_+ -> [-5, oo]` given by `f(x) = 9x^2 + 6x - 5`. Show that f is invertible with `f^(-1) (y) ((sqrt(y + 6)-1)/3)`
Hence Find
1) `f^(-1)(10)`
2) y if `f^(-1) (y) = 4/3`
where R+ is the set of all non-negative real numbers.
If f : R → R, f(x) = x3 and g: R → R , g(x) = 2x2 + 1, and R is the set of real numbers, then find fog(x) and gof (x)
Let f: A → B and g: B → C be the bijective functions. Then (g o f)–1 is ______.
Let f = {(1, 2), (3, 5), (4, 1) and g = {(2, 3), (5, 1), (1, 3)}. Then g o f = ______ and f o g = ______.
The composition of functions is commutative.
The composition of functions is associative.
Every function is invertible.
If f(x) = (ax2 + b)3, then the function g such that f(g(x)) = g(f(x)) is given by ____________.
If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.
If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.
Let f : R → R be the functions defined by f(x) = x3 + 5. Then f-1(x) is ____________.
Consider the function f in `"A = R" - {2/3}` defiend as `"f"("x") = (4"x" + 3)/(6"x" - 4)` Find f-1.
If f is an invertible function defined as f(x) `= (3"x" - 4)/5,` then f-1(x) is ____________.
If f: A → B and G B → C are one – one, then g of A → C is
If f: N → Y be a function defined as f(x) = 4x + 3, Where Y = {y ∈ N: y = 4x+ 3 for some x ∈ N} then function is
If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).