Advertisements
Advertisements
Question
The composition of functions is commutative.
Options
True
False
Solution
This statement is False.
Explanation:
Let f(x) = x2 and g(x) = x + 1
fog(x) = f((g(x))
= f(x + 1)
= (x + 1)2
= x2 + 2x + 1
gof(x) = g(f(x))
= g(x2)
= x2 + 1
Thus fog(x) ≠ gof(x)
APPEARS IN
RELATED QUESTIONS
Let f : W → W be defined as
`f(n)={(n-1, " if n is odd"),(n+1, "if n is even") :}`
Show that f is invertible a nd find the inverse of f. Here, W is the set of all whole
numbers.
Find gof and fog, if f(x) = |x| and g(x) = |5x - 2|
Find gof and fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`
if f(x) = `(4x + 3)/(6x - 4), x ≠ 2/3` show that fof(x) = x, for all x ≠ 2/3 . What is the inverse of f?
Show that f: [−1, 1] → R, given by f(x) = `x/(x + 2)` is one-one. Find the inverse of the function f: [−1, 1] → Range f.
(Hint: For y in Range f, y = `f(x) = x/(x +2)` for some x in [-1, 1] ie x = `2y/(1-y)`
Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Consider f: R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.
Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`
Consider f: {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.
Let f: X → Y be an invertible function. Show that the inverse of f−1 is f, i.e., (f−1)−1 = f.
If f: R → R be given by `f(x) = (3 - x^3)^(1/3)` , then fof(x) is
(A) `1/(x^3)`
(B) x3
(C) x
(D) (3 − x3)
Let `f:R - {-4/3} -> R` be a function defined as `f(x) = (4x)/(3x + 4)`. The inverse of f is map g Range `f -> R -{- 4/3}`
(A) `g(y) = (3y)/(3-4y)`
(B) `g(y) = (4y)/(4 - 3y)`
(C) `g(y) = (4y)/(3 - 4y)`
(D) `g(y) = (3y)/(4 - 3y)`
If f : R → R, f(x) = x3 and g: R → R , g(x) = 2x2 + 1, and R is the set of real numbers, then find fog(x) and gof (x)
Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by g (x) = αx + β, then what value should be assigned to α and β
The composition of functions is associative.
If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.
If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.
Consider the function f in `"A = R" - {2/3}` defiend as `"f"("x") = (4"x" + 3)/(6"x" - 4)` Find f-1.
If f is an invertible function defined as f(x) `= (3"x" - 4)/5,` then f-1(x) is ____________.
If f : R → R defined by f(x) `= (3"x" + 5)/2` is an invertible function, then find f-1.
`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?
Domain of the function defined by `f(x) = 1/sqrt(sin^2 - x) log_10 (cos^-1 x)` is:-
If `f(x) = 1/(x - 1)`, `g(x) = 1/((x + 1)(x - 1))`, then the number of integers which are not in domian of gof(x) are
Let A = `{3/5}` and B = `{7/5}` Let f: A → B: f(x) = `(7x + 4)/(5x - 3)` and g:B → A: g(y) = `(3y + 4)/(5y - 7)` then (gof) is equal to
Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-
If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).