Advertisements
Advertisements
Question
if f(x) = `(4x + 3)/(6x - 4), x ≠ 2/3` show that fof(x) = x, for all x ≠ 2/3 . What is the inverse of f?
Solution
It is given that `f(x) = (4x + 3)/(6x - 4), x != 2/3`
`(fof)(x) = f(f(x)) = f((4x+ 3)/(6x - 4))`
`= (4((4x + 3)/(6x -4)) + 3)/(6((4x +3)/(6x - 4)) - 4) = (16x + 12 + 18x - 12)/(24x + 18 - 24x + 16) = (34x)/(34) = x`
Therefore fof(x) = x for all `x != 2/3`
=> fof = 1
Hence, the given function f is invertible and the inverse of f is f itself.
APPEARS IN
RELATED QUESTIONS
Let f : W → W be defined as
`f(n)={(n-1, " if n is odd"),(n+1, "if n is even") :}`
Show that f is invertible a nd find the inverse of f. Here, W is the set of all whole
numbers.
Let f, g and h be functions from R to R. Show that
`(f + g)oh = foh + goh`
`(f.g)oh = (foh).(goh)`
Find gof and fog, if f(x) = |x| and g(x) = |5x - 2|
Find gof and fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`
State with reason whether following functions have inverse
f: {1, 2, 3, 4} → {10} with
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
State with reason whether following functions have inverse h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Show that f: [−1, 1] → R, given by f(x) = `x/(x + 2)` is one-one. Find the inverse of the function f: [−1, 1] → Range f.
(Hint: For y in Range f, y = `f(x) = x/(x +2)` for some x in [-1, 1] ie x = `2y/(1-y)`
Consider f: {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.
Let f: X → Y be an invertible function. Show that the inverse of f−1 is f, i.e., (f−1)−1 = f.
If f: R → R be given by `f(x) = (3 - x^3)^(1/3)` , then fof(x) is
(A) `1/(x^3)`
(B) x3
(C) x
(D) (3 − x3)
Let f: W → W be defined as f(n) = n − 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
If f: R → R is defined by f(x) = x2 − 3x + 2, find f(f(x)).
Consider f: `R_+ -> [-5, oo]` given by `f(x) = 9x^2 + 6x - 5`. Show that f is invertible with `f^(-1) (y) ((sqrt(y + 6)-1)/3)`
Hence Find
1) `f^(-1)(10)`
2) y if `f^(-1) (y) = 4/3`
where R+ is the set of all non-negative real numbers.
Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is ______.
Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",", "if" x "is rational"),(1 - x",", "if" x "is irrational"):}`. Then (f o f) x is ______.
Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.
The composition of functions is commutative.
The composition of functions is associative.
Every function is invertible.
If f(x) = (ax2 + b)3, then the function g such that f(g(x)) = g(f(x)) is given by ____________.
Let f : N → R : f(x) = `((2"x"−1))/2` and g : Q → R : g(x) = x + 2 be two functions. Then, (gof) `(3/2)` is ____________.
If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.
Let f : R → R be the functions defined by f(x) = x3 + 5. Then f-1(x) is ____________.
The inverse of the function `"y" = (10^"x" - 10^-"x")/(10^"x" + 10^-"x")` is ____________.
If f : R → R defind by f(x) = `(2"x" - 7)/4` is an invertible function, then find f-1.
`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?
The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-
If `f(x) = 1/(x - 1)`, `g(x) = 1/((x + 1)(x - 1))`, then the number of integers which are not in domian of gof(x) are
Let A = `{3/5}` and B = `{7/5}` Let f: A → B: f(x) = `(7x + 4)/(5x - 3)` and g:B → A: g(y) = `(3y + 4)/(5y - 7)` then (gof) is equal to
Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-
If f: A → B and G B → C are one – one, then g of A → C is
If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).