Advertisements
Advertisements
Question
Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is ______.
Options
`(3x^2 - 5)/(9x^4 - 30x^2 + 26)`
`(3x^2 - 5)/(9x^4 - 6x^2 + 26)`
`(3x^2)/(x^4 + 2x^2 - 4)`
`(3x^2)/(9x^4 + 30x^2 - 2`
Solution
Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is `(3x^2 - 5)/(9x^4 - 30x^2 + 26)`.
Explanation:
Given that, f(x) = 3x2 – 5 and g(x) = `x/(x^2 + 1)`
gof(x) = g(f(x))
= g(3x2 – 5)
= `(3x^2 - 5)/((3x^2 - 5)^2 + 1)`
= `(3x^2 - 5)/(9x^4 - 30x^2 + 25 + 1)`
= `(3x^2 - 5)/(9x^4 - 30x^2 + 26)`
APPEARS IN
RELATED QUESTIONS
Let f, g and h be functions from R to R. Show that
`(f + g)oh = foh + goh`
`(f.g)oh = (foh).(goh)`
Find gof and fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`
State with reason whether following functions have inverse
f: {1, 2, 3, 4} → {10} with
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
Consider f: R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.
Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`
Let f: X → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = IY(y) = fog2(y). Use one-one ness of f).
If f: R → R be given by `f(x) = (3 - x^3)^(1/3)` , then fof(x) is
(A) `1/(x^3)`
(B) x3
(C) x
(D) (3 − x3)
If f: R → R is defined by f(x) = x2 − 3x + 2, find f(f(x)).
Let f : W → W be defined as f(x) = x − 1 if x is odd and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.
Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",", "if" x "is rational"),(1 - x",", "if" x "is irrational"):}`. Then (f o f) x is ______.
Let f = {(1, 2), (3, 5), (4, 1) and g = {(2, 3), (5, 1), (1, 3)}. Then g o f = ______ and f o g = ______.
Let f: R → R be the function defined by f(x) = sin (3x+2) ∀ x ∈ R. Then f is invertible.
The composition of functions is commutative.
If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.
Let f : N → R : f(x) = `((2"x"−1))/2` and g : Q → R : g(x) = x + 2 be two functions. Then, (gof) `(3/2)` is ____________.
Let f : R → R be the functions defined by f(x) = x3 + 5. Then f-1(x) is ____________.
Which one of the following functions is not invertible?
Consider the function f in `"A = R" - {2/3}` defiend as `"f"("x") = (4"x" + 3)/(6"x" - 4)` Find f-1.
If f is an invertible function defined as f(x) `= (3"x" - 4)/5,` then f-1(x) is ____________.
If f : R → R defined by f(x) `= (3"x" + 5)/2` is an invertible function, then find f-1.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Two neighbors X and Y ∈ I. X exercised his voting right while Y did not cast her vote in a general election - 2019. Which of the following is true?
The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-
If `f(x) = 1/(x - 1)`, `g(x) = 1/((x + 1)(x - 1))`, then the number of integers which are not in domian of gof(x) are
Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-
If f: A → B and G B → C are one – one, then g of A → C is
If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).
Let `f : R {(-1)/3} → R - {0}` be defined as `f(x) = 5/(3x + 1)` is invertible. Find f–1(x).