English

Consider F: R+ → [4, ∞) Given by F(X) = X2 + 4. Show that F is Invertible with the Inverse F−1 of Given F by F−1(Y)=Y−4−−−−−√F-1(Y)=Y-4 Where R+ is the Set of All Non-negative Real Numbers. - Mathematics

Advertisements
Advertisements

Question

Consider fR→ [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.

Solution

fR+ → [4, ∞) is given as f(x) = x2 + 4.

One-one:

Let f(x) = f(y).

`=> x^2 + 4 = y^2 + 4`

`=> x^2 = y^2`

=> x = y             [as `x = y in R`]

∴ f is a one-one function.

Onto:

For y ∈ [4, ∞), let y = x2 + 4.

`=> x^2 = y - 4 >= 0 `  [as `y >= 4`]

`=> x = sqrt(y-4) >= 0`

Therefore, for any ∈ R, there exists `x = sqrt(y - 4) in R` such that

`f(x) = f(sqrt(y - 4)) = (sqrt(y-4))^2 + 4 = y - 4 + 4 = y`

∴ f is onto.

Thus, f is one-one and onto and therefore, f−1 exists.

Let us define g: [4, ∞) → Rby,

`g(y) = sqrt(y-4)`

Now, `gof(x) = g(f(x)) = g(x^2 + 4) = sqrt((x^2 + 4) - 4) = sqrt(x^2) = x`

And `fog (y) = f(g(y)) =f(sqrt(y -4)) = (sqrt(y - 4))^2 + 4= (y- 4) + 4 = y`

`:. gof = fog= I_(R+)`

Hence, f is invertible and the inverse of f is given by

`f^(-1) = g(y) = sqrt(y - 4)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.3 [Page 18]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.3 | Q 8 | Page 18

RELATED QUESTIONS

Let f : W → W be defined as

`f(n)={(n-1, " if n is odd"),(n+1, "if n is even") :}`

Show that f is invertible a nd find the inverse of f. Here, W is the set of all whole
numbers.


Let fg and h be functions from to R. Show that

`(f + g)oh = foh + goh`

`(f.g)oh = (foh).(goh)`


Find gof and fog, if  f(x) = |x| and g(x) = |5x - 2|


State with reason whether following functions have inverse

f: {1, 2, 3, 4} → {10} with

f = {(1, 10), (2, 10), (3, 10), (4, 10)}


State with reason whether following functions have inverse h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Show that f: [−1, 1] → R, given by f(x) = `x/(x + 2)`  is one-one. Find the inverse of the function f: [−1, 1] → Range f.

(Hint: For y in Range f, y = `f(x) = x/(x +2)` for some x in [-1, 1] ie x = `2y/(1-y)`


Consider fR → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


Consider fR+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`


Let fX → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Yfog1(y) = IY(y) = fog2(y). Use one-one ness of f).


Let fX → Y be an invertible function. Show that the inverse of f−1 is f, i.e., (f−1)−1 = f.


If f→ be given by `f(x) = (3 - x^3)^(1/3)` , then fof(x) is 

(A) `1/(x^3)`

(B) x3

(C) x

(D) (3 − x3)


If f: R → R is defined by f(x) = x2 − 3x + 2, find f(f(x)).


Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by g (x) = αx + β, then what value should be assigned to α and β


Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is ______.


Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",",  "if"  x  "is rational"),(1 - x",",  "if"  x  "is irrational"):}`. Then (f o f) x is ______.


Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.


Let f = {(1, 2), (3, 5), (4, 1) and g = {(2, 3), (5, 1), (1, 3)}. Then g o f = ______ and f o g = ______.


The composition of functions is associative.


Every function is invertible.


If f(x) = (ax2 + b)3, then the function g such that f(g(x)) = g(f(x)) is given by ____________.


If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.


Let f : N → R : f(x) = `((2"x"−1))/2` and g : Q → R : g(x) = x + 2 be two functions. Then, (gof) `(3/2)` is ____________.


If f : R → R, g : R → R and h : R → R are such that f(x) = x2, g(x) = tan x and h(x) = log x, then the value of (go(foh)) (x), if x = 1 will be ____________.


If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.


If f(x) = (ax2 – b)3, then the function g such that f{g(x)} = g{f(x)} is given by ____________.


Which one of the following functions is not invertible?


The inverse of the function `"y" = (10^"x" - 10^-"x")/(10^"x" + 10^-"x")` is ____________.


If f : R → R defind by f(x) = `(2"x" - 7)/4` is an invertible function, then find f-1.


If f is an invertible function defined as f(x) `= (3"x" - 4)/5,` then f-1(x) is ____________.


If f : R → R defined by f(x) `= (3"x" + 5)/2` is an invertible function, then find f-1.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Two neighbors X and Y ∈ I. X exercised his voting right while Y did not cast her vote in a general election - 2019. Which of the following is true?

The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-


Domain of the function defined by `f(x) = 1/sqrt(sin^2 - x) log_10 (cos^-1 x)` is:-


If f: A → B and G B → C are one – one, then g of A → C is


If f: N → Y be a function defined as f(x) = 4x + 3, Where Y = {y ∈ N: y = 4x+ 3 for some x ∈ N} then function is


If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×