Advertisements
Advertisements
Question
If f: R → R be given by `f(x) = (3 - x^3)^(1/3)` , then fof(x) is
(A) `1/(x^3)`
(B) x3
(C) x
(D) (3 − x3)
Solution
`f: R → R is given as `f(x) = (3 - x^3)^(1/3)
`f(x) = (3 - x^3)^(1/3)`
`:. fof(x) = f(f(x)) = f((3-x^3)^(1/3)) = [3 - ((3 - x^3)^(1/3))^3]^(1/3)`
`= [3 - (3 - x^3)]^(1/3) = (x^3)^(1/3) = x`
:. fof(x) = x
The correct answer is C.
APPEARS IN
RELATED QUESTIONS
Let f : W → W be defined as
`f(n)={(n-1, " if n is odd"),(n+1, "if n is even") :}`
Show that f is invertible a nd find the inverse of f. Here, W is the set of all whole
numbers.
if f(x) = `(4x + 3)/(6x - 4), x ≠ 2/3` show that fof(x) = x, for all x ≠ 2/3 . What is the inverse of f?
State with reason whether following functions have inverse
f: {1, 2, 3, 4} → {10} with
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
State with reason whether following functions have inverse h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Consider f: R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.
Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`
Let f: X → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = IY(y) = fog2(y). Use one-one ness of f).
Consider f: {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.
Let `f:R - {-4/3} -> R` be a function defined as `f(x) = (4x)/(3x + 4)`. The inverse of f is map g Range `f -> R -{- 4/3}`
(A) `g(y) = (3y)/(3-4y)`
(B) `g(y) = (4y)/(4 - 3y)`
(C) `g(y) = (4y)/(3 - 4y)`
(D) `g(y) = (3y)/(4 - 3y)`
Let f: W → W be defined as f(n) = n − 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
Let f : W → W be defined as f(x) = x − 1 if x is odd and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.
Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by g (x) = αx + β, then what value should be assigned to α and β
Let f: A → B and g: B → C be the bijective functions. Then (g o f)–1 is ______.
Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",", "if" x "is rational"),(1 - x",", "if" x "is irrational"):}`. Then (f o f) x is ______.
Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.
The composition of functions is commutative.
The composition of functions is associative.
Every function is invertible.
If f(x) = (ax2 + b)3, then the function g such that f(g(x)) = g(f(x)) is given by ____________.
If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.
Let f : N → R : f(x) = `((2"x"−1))/2` and g : Q → R : g(x) = x + 2 be two functions. Then, (gof) `(3/2)` is ____________.
If f : R → R, g : R → R and h : R → R are such that f(x) = x2, g(x) = tan x and h(x) = log x, then the value of (go(foh)) (x), if x = 1 will be ____________.
If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.
Let f : R → R be the functions defined by f(x) = x3 + 5. Then f-1(x) is ____________.
If f(x) = (ax2 – b)3, then the function g such that f{g(x)} = g{f(x)} is given by ____________.
The inverse of the function `"y" = (10^"x" - 10^-"x")/(10^"x" + 10^-"x")` is ____________.
Consider the function f in `"A = R" - {2/3}` defiend as `"f"("x") = (4"x" + 3)/(6"x" - 4)` Find f-1.
`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?
The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-
Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-
If f: N → Y be a function defined as f(x) = 4x + 3, Where Y = {y ∈ N: y = 4x+ 3 for some x ∈ N} then function is
Let `f : R {(-1)/3} → R - {0}` be defined as `f(x) = 5/(3x + 1)` is invertible. Find f–1(x).