English

Show that f: [−1, 1] → R, given by f(x) = x/(x + 2) is one-one. Find the inverse of the function f: [−1, 1] → Range f. - Mathematics

Advertisements
Advertisements

Question

Show that f: [−1, 1] → R, given by f(x) = `x/(x + 2)`  is one-one. Find the inverse of the function f: [−1, 1] → Range f.

(Hint: For y in Range f, y = `f(x) = x/(x +2)` for some x in [-1, 1] ie x = `2y/(1-y)`

Solution

`f: [−1, 1] → R is given as `f(x) = x/(x + 2)`

Let f(x) = f(y).

`=> x/(x + 2) = y/(y +2)`

=> xy + 2x = xy + 2y

=> 2x = 2y

=> x = y

∴ f is a one-one function.

It is clear that f: [−1, 1] → Range f is onto.

∴ f: [−1, 1] → Range f is one-one and onto and therefore, the inverse of the function:

f: [−1, 1] → Range exists.

Let g: Range f → [−1, 1] be the inverse of f.

Let y be an arbitrary element of range f.

Since f: [−1, 1] → Range f is onto, we have:

`=> y = x/(x + 2)`

=> xy + 2y = x

=> x(1-y)= 2y

`=> x = (2y)/(1-y), y !=1`

`g(y) = (2y)/(1-y), y != 1`

Now `(gof) (x) = g(f(x)) = g(x/(x+2))= (2(x/(x+2)))/(1-x/(x+2)) = (2x)/(x + 2 - x) = 2x/2 = x`

`(fog)(y) = f(g(y)) = f("2y"/(1-y)) = ((2y)/((1-y)))/(((2y)/(1-y)) +2) = (2y)/(2y + 2 -2y) = (2y)/2 = y`

`:. gof = I_(-1,1) and fog - I_"Range f"`

`:. f^(-1) = g`

`=> f^(-1) (y) = "2y"/(1 - y), y != 1`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.3 [Page 18]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.3 | Q 6 | Page 18

RELATED QUESTIONS

If the function f : R → R be defined by f(x) = 2x − 3 and g : R → R by g(x) = x3 + 5, then find the value of (fog)−1 (x).


Let fg and h be functions from to R. Show that

`(f + g)oh = foh + goh`

`(f.g)oh = (foh).(goh)`


Find gof and fog, if  f(x) = |x| and g(x) = |5x - 2|


Find goand fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`

 


State with reason whether following functions have inverse h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Consider fR → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


Consider fR+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`


Let fX → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Yfog1(y) = IY(y) = fog2(y). Use one-one ness of f).


Consider f: {1, 2, 3} → {abc} given by f(1) = af(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.


Let `f:R - {-4/3} -> R` be a function defined as `f(x) = (4x)/(3x + 4)`. The inverse of f is map g Range `f -> R -{- 4/3}`

(A) `g(y) = (3y)/(3-4y)`

(B) `g(y) = (4y)/(4 - 3y)`

(C) `g(y) = (4y)/(3 - 4y)` 

(D) `g(y) = (3y)/(4 - 3y)`


Consider f: `R_+ -> [-5, oo]` given by `f(x) = 9x^2 + 6x - 5`. Show that f is invertible with `f^(-1) (y) ((sqrt(y + 6)-1)/3)`

Hence Find

1) `f^(-1)(10)`

2) y if `f^(-1) (y) = 4/3`

where R+ is the set of all non-negative real numbers.


If f : R → R, f(x) = x and g: R → R , g(x) =  2x+ 1, and R is the set of real numbers, then find fog(x) and gof (x)


Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by g (x) = αx + β, then what value should be assigned to α and β


Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is ______.


Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",",  "if"  x  "is rational"),(1 - x",",  "if"  x  "is irrational"):}`. Then (f o f) x is ______.


Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.


The composition of functions is commutative.


If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.


Which one of the following functions is not invertible?


The inverse of the function `"y" = (10^"x" - 10^-"x")/(10^"x" + 10^-"x")` is ____________.


If f : R → R defind by f(x) = `(2"x" - 7)/4` is an invertible function, then find f-1.


Consider the function f in `"A = R" - {2/3}` defiend as `"f"("x") = (4"x" + 3)/(6"x" - 4)` Find f-1.


If f is an invertible function defined as f(x) `= (3"x" - 4)/5,` then f-1(x) is ____________.


If f : R → R defined by f(x) `= (3"x" + 5)/2` is an invertible function, then find f-1.


`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?


If `f(x) = 1/(x - 1)`, `g(x) = 1/((x + 1)(x - 1))`, then the number of integers which are not in domian of gof(x) are


Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-


If f: N → Y be a function defined as f(x) = 4x + 3, Where Y = {y ∈ N: y = 4x+ 3 for some x ∈ N} then function is


If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×