हिंदी

Show that f: [−1, 1] → R, given by f(x) = x/(x + 2) is one-one. Find the inverse of the function f: [−1, 1] → Range f. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f: [−1, 1] → R, given by f(x) = `x/(x + 2)`  is one-one. Find the inverse of the function f: [−1, 1] → Range f.

(Hint: For y in Range f, y = `f(x) = x/(x +2)` for some x in [-1, 1] ie x = `2y/(1-y)`

उत्तर

`f: [−1, 1] → R is given as `f(x) = x/(x + 2)`

Let f(x) = f(y).

`=> x/(x + 2) = y/(y +2)`

=> xy + 2x = xy + 2y

=> 2x = 2y

=> x = y

∴ f is a one-one function.

It is clear that f: [−1, 1] → Range f is onto.

∴ f: [−1, 1] → Range f is one-one and onto and therefore, the inverse of the function:

f: [−1, 1] → Range exists.

Let g: Range f → [−1, 1] be the inverse of f.

Let y be an arbitrary element of range f.

Since f: [−1, 1] → Range f is onto, we have:

`=> y = x/(x + 2)`

=> xy + 2y = x

=> x(1-y)= 2y

`=> x = (2y)/(1-y), y !=1`

`g(y) = (2y)/(1-y), y != 1`

Now `(gof) (x) = g(f(x)) = g(x/(x+2))= (2(x/(x+2)))/(1-x/(x+2)) = (2x)/(x + 2 - x) = 2x/2 = x`

`(fog)(y) = f(g(y)) = f("2y"/(1-y)) = ((2y)/((1-y)))/(((2y)/(1-y)) +2) = (2y)/(2y + 2 -2y) = (2y)/2 = y`

`:. gof = I_(-1,1) and fog - I_"Range f"`

`:. f^(-1) = g`

`=> f^(-1) (y) = "2y"/(1 - y), y != 1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.3 [पृष्ठ १८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.3 | Q 6 | पृष्ठ १८

संबंधित प्रश्न

If the function f : R → R be defined by f(x) = 2x − 3 and g : R → R by g(x) = x3 + 5, then find the value of (fog)−1 (x).


Find gof and fog, if  f(x) = |x| and g(x) = |5x - 2|


State with reason whether following functions have inverse

f: {1, 2, 3, 4} → {10} with

f = {(1, 10), (2, 10), (3, 10), (4, 10)}


State with reason whether following functions have inverse g: {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


State with reason whether following functions have inverse h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Consider fR+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^(-1)(y) = ((sqrt(y +6) - 1)/3)`


Let fX → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Yfog1(y) = IY(y) = fog2(y). Use one-one ness of f).


Consider f: {1, 2, 3} → {abc} given by f(1) = af(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.


Let `f:R - {-4/3} -> R` be a function defined as `f(x) = (4x)/(3x + 4)`. The inverse of f is map g Range `f -> R -{- 4/3}`

(A) `g(y) = (3y)/(3-4y)`

(B) `g(y) = (4y)/(4 - 3y)`

(C) `g(y) = (4y)/(3 - 4y)` 

(D) `g(y) = (3y)/(4 - 3y)`


If f: R → R is defined by f(x) = x2 − 3x + 2, find f(f(x)).


Let f : W → W be defined as f(x) = x − 1 if x is odd and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.


Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.


Let f = {(1, 2), (3, 5), (4, 1) and g = {(2, 3), (5, 1), (1, 3)}. Then g o f = ______ and f o g = ______.


The composition of functions is commutative.


If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.


If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.


Let f : R – `{3/5}`→ R be defined by f(x) = `(3"x" + 2)/(5"x" - 3)` Then ____________.


If f(x) = (ax2 – b)3, then the function g such that f{g(x)} = g{f(x)} is given by ____________.


The inverse of the function `"y" = (10^"x" - 10^-"x")/(10^"x" + 10^-"x")` is ____________.


If f is an invertible function defined as f(x) `= (3"x" - 4)/5,` then f-1(x) is ____________.


If f : R → R defined by f(x) `= (3"x" + 5)/2` is an invertible function, then find f-1.


`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?


The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-


Domain of the function defined by `f(x) = 1/sqrt(sin^2 - x) log_10 (cos^-1 x)` is:-


If `f(x) = 1/(x - 1)`, `g(x) = 1/((x + 1)(x - 1))`, then the number of integers which are not in domian of gof(x) are


Let A = `{3/5}` and B = `{7/5}` Let f: A → B: f(x) = `(7x + 4)/(5x - 3)` and g:B → A: g(y) = `(3y + 4)/(5y - 7)` then (gof) is equal to


Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-


If f: A → B and G B → C are one – one, then g of A → C is


If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).


Let `f : R {(-1)/3} → R - {0}` be defined as `f(x) = 5/(3x + 1)` is invertible. Find f–1(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×