हिंदी

Let `F:R - {-4/3} -> R` Be a Function Defined as `F(X) = (4x)/(3x + 4)`. the Inverse Of F Is Map G Range `F -> R -{- 4/3}` - Mathematics

Advertisements
Advertisements

प्रश्न

Let `f:R - {-4/3} -> R` be a function defined as `f(x) = (4x)/(3x + 4)`. The inverse of f is map g Range `f -> R -{- 4/3}`

(A) `g(y) = (3y)/(3-4y)`

(B) `g(y) = (4y)/(4 - 3y)`

(C) `g(y) = (4y)/(3 - 4y)` 

(D) `g(y) = (3y)/(4 - 3y)`

उत्तर

t is given that `f:R -{-4/3} -> R` is defined as `f(x) = (4x)/(3x - 4)`

Let y be an arbitrary element of Range f.

Then, there exists x ∈ `R - {-4/3}` such that `y = f(x)`

`=> y = (4x)/(3x +  4)`

=>3xy + 4y = 4x  Let us define g: Range `f -> R -{-4/3} " as " g(y) = (4y)/(4 -3y)`

=> x(4 - 3y) = 4y

Now `(gof)(x) = g(f(x)) = g((4x)/(3x + 4))`

`=> x = (4y)/(4 -3y)`

`= (4(4x/(3x + 4)))/(4 - 3("4x"/(3x + 4)))  = "16x"/(12x + 16 - 12x)  = "16x"/16 = x`

And `(fog)(y) = f(g(y)) = f((4y)/(4 - 3y))`

`= (4("4y"/(4-3y)))/(3("4y"/(4 - 3y)) + 4) = (16y)/(12y + 16 -  12y) = (16y)/16 = y`

:. `gof = I_(R - (-4/3))` and fog = I_"Range f"

Thus, g is the inverse of f i.e., f−1 = g.

Hence, the inverse of f is the map `g: Range f -> R - {-4/3}` which is given by

`g(y) = "4y"/(4 - 3y)`

The correct answer is B.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.3 [पृष्ठ १९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.3 | Q 14 | पृष्ठ १९

संबंधित प्रश्न

If the function f : R → R be defined by f(x) = 2x − 3 and g : R → R by g(x) = x3 + 5, then find the value of (fog)−1 (x).


Let f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} be given by = {(1, 2), (3, 5), (4, 1)} and = {(1, 3), (2, 3), (5, 1)}. Write down gof.


Find gof and fog, if  f(x) = |x| and g(x) = |5x - 2|


State with reason whether following functions have inverse

f: {1, 2, 3, 4} → {10} with

f = {(1, 10), (2, 10), (3, 10), (4, 10)}


State with reason whether following functions have inverse g: {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Show that f: [−1, 1] → R, given by f(x) = `x/(x + 2)`  is one-one. Find the inverse of the function f: [−1, 1] → Range f.

(Hint: For y in Range f, y = `f(x) = x/(x +2)` for some x in [-1, 1] ie x = `2y/(1-y)`


Consider fR → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


Consider fR→ [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.


Let fX → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Yfog1(y) = IY(y) = fog2(y). Use one-one ness of f).


Consider f: {1, 2, 3} → {abc} given by f(1) = af(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.


Let fX → Y be an invertible function. Show that the inverse of f−1 is f, i.e., (f−1)−1 = f.


If f→ be given by `f(x) = (3 - x^3)^(1/3)` , then fof(x) is 

(A) `1/(x^3)`

(B) x3

(C) x

(D) (3 − x3)


Consider f: `R_+ -> [-5, oo]` given by `f(x) = 9x^2 + 6x - 5`. Show that f is invertible with `f^(-1) (y) ((sqrt(y + 6)-1)/3)`

Hence Find

1) `f^(-1)(10)`

2) y if `f^(-1) (y) = 4/3`

where R+ is the set of all non-negative real numbers.


Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is ______.


Let f: A → B and g: B → C be the bijective functions. Then (g o f)–1 is ______.


Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",",  "if"  x  "is rational"),(1 - x",",  "if"  x  "is irrational"):}`. Then (f o f) x is ______.


Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.


The composition of functions is commutative.


If f(x) = (ax2 + b)3, then the function g such that f(g(x)) = g(f(x)) is given by ____________.


If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.


Let f : N → R : f(x) = `((2"x"−1))/2` and g : Q → R : g(x) = x + 2 be two functions. Then, (gof) `(3/2)` is ____________.


If f : R → R, g : R → R and h : R → R are such that f(x) = x2, g(x) = tan x and h(x) = log x, then the value of (go(foh)) (x), if x = 1 will be ____________.


Let f : R – `{3/5}`→ R be defined by f(x) = `(3"x" + 2)/(5"x" - 3)` Then ____________.


If f(x) = (ax2 – b)3, then the function g such that f{g(x)} = g{f(x)} is given by ____________.


The inverse of the function `"y" = (10^"x" - 10^-"x")/(10^"x" + 10^-"x")` is ____________.


If f : R → R defind by f(x) = `(2"x" - 7)/4` is an invertible function, then find f-1.


Consider the function f in `"A = R" - {2/3}` defiend as `"f"("x") = (4"x" + 3)/(6"x" - 4)` Find f-1.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Two neighbors X and Y ∈ I. X exercised his voting right while Y did not cast her vote in a general election - 2019. Which of the following is true?

`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?


Domain of the function defined by `f(x) = 1/sqrt(sin^2 - x) log_10 (cos^-1 x)` is:-


If `f(x) = 1/(x - 1)`, `g(x) = 1/((x + 1)(x - 1))`, then the number of integers which are not in domian of gof(x) are


Let A = `{3/5}` and B = `{7/5}` Let f: A → B: f(x) = `(7x + 4)/(5x - 3)` and g:B → A: g(y) = `(3y + 4)/(5y - 7)` then (gof) is equal to


Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-


If f: A → B and G B → C are one – one, then g of A → C is


If f: N → Y be a function defined as f(x) = 4x + 3, Where Y = {y ∈ N: y = 4x+ 3 for some x ∈ N} then function is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×