हिंदी

Let f: [0, 1] → [0, 1] be defined by f(x) = ,ifis rational,ifis irrational{x, if x is rational1-x, if x is irrational. Then (f o f) x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",",  "if"  x  "is rational"),(1 - x",",  "if"  x  "is irrational"):}`. Then (f o f) x is ______.

विकल्प

  • Constant

  • 1 + x

  • x

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",",  "if"  x  "is rational"),(1 - x",",  "if"  x  "is irrational"):}`. Then (f o f) x is x.

Explanation:

Given that, f: [0, 1] → [0, 1] be defined by

f(f(x)) = `{{:(f(x)",",  "if"  f(x)  "is rational"),(1 - f(x)",",  "if"  f(x)  "is  irrational"):}`

=  `{{:(x",",  "if"  x  "is rational"),(1 - (1 - x)",",  "if"  1 - x  "is  irrational"):}`

= `{{:(x",",  "if"  x  "is rational"),(x",",  "if"  x  "is irrational"):}`

∴ (fof)x = f(f(x)) = x

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations And Functions - Exercise [पृष्ठ १५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 1 Relations And Functions
Exercise | Q 43 | पृष्ठ १५

संबंधित प्रश्न

If the function f : R → R be defined by f(x) = 2x − 3 and g : R → R by g(x) = x3 + 5, then find the value of (fog)−1 (x).


Let f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} be given by = {(1, 2), (3, 5), (4, 1)} and = {(1, 3), (2, 3), (5, 1)}. Write down gof.


Let fg and h be functions from to R. Show that

`(f + g)oh = foh + goh`

`(f.g)oh = (foh).(goh)`


Find goand fog, if `f(x) = 8x^3` and `g(x) = x^(1/3)`

 


State with reason whether following functions have inverse

f: {1, 2, 3, 4} → {10} with

f = {(1, 10), (2, 10), (3, 10), (4, 10)}


State with reason whether following functions have inverse g: {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Show that f: [−1, 1] → R, given by f(x) = `x/(x + 2)`  is one-one. Find the inverse of the function f: [−1, 1] → Range f.

(Hint: For y in Range f, y = `f(x) = x/(x +2)` for some x in [-1, 1] ie x = `2y/(1-y)`


Consider fR→ [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.


Let fX → Y be an invertible function. Show that the inverse of f−1 is f, i.e., (f−1)−1 = f.


If f→ be given by `f(x) = (3 - x^3)^(1/3)` , then fof(x) is 

(A) `1/(x^3)`

(B) x3

(C) x

(D) (3 − x3)


Let `f:R - {-4/3} -> R` be a function defined as `f(x) = (4x)/(3x + 4)`. The inverse of f is map g Range `f -> R -{- 4/3}`

(A) `g(y) = (3y)/(3-4y)`

(B) `g(y) = (4y)/(4 - 3y)`

(C) `g(y) = (4y)/(3 - 4y)` 

(D) `g(y) = (3y)/(4 - 3y)`


If f: R → R is defined by f(x) = x2 − 3x + 2, find f(f(x)).


Consider f: `R_+ -> [-5, oo]` given by `f(x) = 9x^2 + 6x - 5`. Show that f is invertible with `f^(-1) (y) ((sqrt(y + 6)-1)/3)`

Hence Find

1) `f^(-1)(10)`

2) y if `f^(-1) (y) = 4/3`

where R+ is the set of all non-negative real numbers.


Let f : W → W be defined as f(x) = x − 1 if x is odd and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.


Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by g (x) = αx + β, then what value should be assigned to α and β


Let f : N → R : f(x) = `((2"x"−1))/2` and g : Q → R : g(x) = x + 2 be two functions. Then, (gof) `(3/2)` is ____________.


If f(x) = `(3"x" + 2)/(5"x" - 3)` then (fof)(x) is ____________.


Let f : R → R be the functions defined by f(x) = x3 + 5. Then f-1(x) is ____________.


Let f : R – `{3/5}`→ R be defined by f(x) = `(3"x" + 2)/(5"x" - 3)` Then ____________.


If f(x) = (ax2 – b)3, then the function g such that f{g(x)} = g{f(x)} is given by ____________.


If f is an invertible function defined as f(x) `= (3"x" - 4)/5,` then f-1(x) is ____________.


`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?


The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-


If `f(x) = 1/(x - 1)`, `g(x) = 1/((x + 1)(x - 1))`, then the number of integers which are not in domian of gof(x) are


If f: N → Y be a function defined as f(x) = 4x + 3, Where Y = {y ∈ N: y = 4x+ 3 for some x ∈ N} then function is


If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).


Let `f : R {(-1)/3} → R - {0}` be defined as `f(x) = 5/(3x + 1)` is invertible. Find f–1(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×