Topics
Relations and Functions
Relations and Functions
Inverse Trigonometric Functions
Algebra
Calculus
Matrices
- Introduction of Matrices
- Order of a Matrix
- Types of Matrices
- Equality of Matrices
- Introduction of Operations on Matrices
- Addition of Matrices
- Multiplication of a Matrix by a Scalar
- Properties of Matrix Addition
- Properties of Scalar Multiplication of a Matrix
- Multiplication of Matrices
- Properties of Multiplication of Matrices
- Transpose of a Matrix
- Properties of Transpose of the Matrices
- Symmetric and Skew Symmetric Matrices
- Invertible Matrices
- Inverse of a Matrix by Elementary Transformation
- Multiplication of Two Matrices
- Negative of Matrix
- Subtraction of Matrices
- Proof of the Uniqueness of Inverse
- Elementary Transformations
- Matrices Notation
Determinants
- Introduction of Determinant
- Determinants of Matrix of Order One and Two
- Determinant of a Matrix of Order 3 × 3
- Area of a Triangle
- Minors and Co-factors
- Inverse of a Square Matrix by the Adjoint Method
- Applications of Determinants and Matrices
- Elementary Transformations
- Properties of Determinants
- Determinant of a Square Matrix
- Rule A=KB
Vectors and Three-dimensional Geometry
Linear Programming
Continuity and Differentiability
- Concept of Continuity
- Algebra of Continuous Functions
- Concept of Differentiability
- Derivatives of Composite Functions - Chain Rule
- Derivatives of Implicit Functions
- Derivatives of Inverse Trigonometric Functions
- Exponential and Logarithmic Functions
- Logarithmic Differentiation
- Derivatives of Functions in Parametric Forms
- Second Order Derivative
- Derivative - Exponential and Log
- Proof Derivative X^n Sin Cos Tan
- Infinite Series
- Higher Order Derivative
- Continuous Function of Point
- Mean Value Theorem
Applications of Derivatives
- Introduction to Applications of Derivatives
- Rate of Change of Bodies or Quantities
- Increasing and Decreasing Functions
- Maxima and Minima
- Maximum and Minimum Values of a Function in a Closed Interval
- Simple Problems on Applications of Derivatives
- Graph of Maxima and Minima
- Approximations
- Tangents and Normals
Probability
Integrals
- Introduction of Integrals
- Integration as an Inverse Process of Differentiation
- Some Properties of Indefinite Integral
- Methods of Integration: Integration by Substitution
- Integration Using Trigonometric Identities
- Integrals of Some Particular Functions
- Methods of Integration: Integration Using Partial Fractions
- Methods of Integration: Integration by Parts
- Fundamental Theorem of Calculus
- Evaluation of Definite Integrals by Substitution
- Properties of Definite Integrals
- Definite Integrals
- Indefinite Integral Problems
- Comparison Between Differentiation and Integration
- Geometrical Interpretation of Indefinite Integrals
- Indefinite Integral by Inspection
- Definite Integral as the Limit of a Sum
- Evaluation of Simple Integrals of the Following Types and Problems
Sets
- Sets
Applications of the Integrals
Differential Equations
- Differential Equations
- Order and Degree of a Differential Equation
- General and Particular Solutions of a Differential Equation
- Linear Differential Equations
- Homogeneous Differential Equations
- Solutions of Linear Differential Equation
- Differential Equations with Variables Separable Method
- Formation of a Differential Equation Whose General Solution is Given
- Procedure to Form a Differential Equation that Will Represent a Given Family of Curves
Vectors
- Introduction of Vector
- Basic Concepts of Vector Algebra
- Direction Cosines
- Vectors and Their Types
- Addition of Vectors
- Properties of Vector Addition
- Multiplication of a Vector by a Scalar
- Components of Vector
- Vector Joining Two Points
- Section Formula
- Vector (Or Cross) Product of Two Vectors
- Scalar (Or Dot) Product of Two Vectors
- Projection of a Vector on a Line
- Geometrical Interpretation of Scalar
- Scalar Triple Product of Vectors
- Position Vector of a Point Dividing a Line Segment in a Given Ratio
- Magnitude and Direction of a Vector
- Vectors Examples and Solutions
- Introduction of Product of Two Vectors
Three - Dimensional Geometry
- Introduction of Three Dimensional Geometry
- Direction Cosines and Direction Ratios of a Line
- Relation Between Direction Ratio and Direction Cosines
- Equation of a Line in Space
- Angle Between Two Lines
- Shortest Distance Between Two Lines
- Three - Dimensional Geometry Examples and Solutions
- Equation of a Plane Passing Through Three Non Collinear Points
- Intercept Form of the Equation of a Plane
- Coplanarity of Two Lines
- Distance of a Point from a Plane
- Angle Between Line and a Plane
- Angle Between Two Planes
- Vector and Cartesian Equation of a Plane
- Equation of a Plane in Normal Form
- Equation of a Plane Perpendicular to a Given Vector and Passing Through a Given Point
- Distance of a Point from a Plane
- Plane Passing Through the Intersection of Two Given Planes
Linear Programming
Probability
- Introduction of Probability
- Conditional Probability
- Properties of Conditional Probability
- Multiplication Theorem on Probability
- Independent Events
- Bayes’ Theorem
- Variance of a Random Variable
- Probability Examples and Solutions
- Random Variables and Its Probability Distributions
- Mean of a Random Variable
- Bernoulli Trials and Binomial Distribution
Notes
In order to understant the composition of functions we have taken three sets in front of us name them as A,B and C.
now if we take a function f which is moving from A to B and then beginning with the stage set B, I take another function g from B to C. If we take a random element , after applying the funtion f it becomes f(x). Now beginning with f(x), this act as the element for the new function g and gives us the final product as g(f(x)), in short the new function which moves from A to C is defined by gof.
So if to define the function we say if
f: A→B & g: B→C, then
gof: A→C defined by gof(x)= g(f(x)) ∀x∈A
Notes:
1) f: A→B and g: B→C then,
range of f should be the starting point of the domain for the next function g for gof to exist. Likewise for fog to exist, the range of g should be subset of domain of f.
2) In general fog ≠ gof
Example- Let f: R→R
`"f"(x)= x^2`
g: R→R
g(x)= 2x+1
find fog & gof.
Solution- fog(x)= f(g(x))
fog(x)= f(2x+1)= (2x+1)^2
`gof(x)= g(f(x))`
`gof(x)= g(x^2)= 2x^2+1`
Invertible functions- Invertible means the function will be one one or onto both, that means the function will be bijective.
This means if f: A→B, then there exists `"f"^-1:"B"→"A"`
So, if this is was f(x)= y then `x= "f"^-1(y)`
Example1- If A= {1,2,3}, B= {4,5,6,7} and f={(1,4), (2,5), (3,6)} is a function from A to B. Is it one- one function?
Yes, because every element in set A have different image.
Example2- If f is invertible which is defined as `"f"(x)= (3x-4)/5` then write `"f"^-1 (x).`
Solution- f(x)=y
`(3x-4)/5 = y`
3x-4 = 5y
`x= (5y+4)/3 = "f"^-1 (y)`
Theorem 1: If f : X → Y, g : Y → Z and h : Z → S are functions, then ho(gof) = (hog)of.
Proof : We have
ho(gof) (x) = h(gof(x)) = h(g(f(x))), ∀x in X
and (hog) of (x) = hog(f (x)) = h(g(f(x))), ∀x in X.
Hence, ho(gof) = (hog)of.
Theorem 2: Let f : X → Y and g : Y → Z be two invertible functions. Then gof is also invertible with `(gof)^(–1) = f^(–1)og^(–1).`
Proof: To show that gof is invertible with `(gof)^(–1) = f^(–1)og^(–1)`,
it is enough to show that `(f^(–1)og^(–1))o(gof) = "I"_X and (gof)o(f^(–1)og^(–1)) = "I"_Z.`
Now, `(f^(–1)og^(–1))o(gof) = ((f^(–1)og^(–1)) og) of`, byTheorem 1
= `(f^(–1)o(g^(–1)og)) of`, by Theorem 1
= `(f^(–1) oI_Y) of`, by definition of `g^–1`
= `"I"_X. `
Similarly, it can be shown that `(gof)o(f ^(–1) og ^(–1)) = "I"_Z.`
Video Tutorials
Shaalaa.com | Relations and Functions part 26 (Composition of Functions)
Series: 1
00:10:58 undefined
00:09:29 undefined
00:09:38 undefined
00:07:28 undefined