Advertisements
Advertisements
प्रश्न
Let f: A → B and g: B → C be the bijective functions. Then (g o f)–1 is ______.
विकल्प
f –1 o g–1
f o g
g–1 o f–1
g o f
उत्तर
Let f: A → B and g: B → C be the bijective functions. Then (g o f)–1 is f –1 o g–1.
Explanation:
Given that, f: A → B and g: B → C be the bijective functions.
(f –1 o g–1) o (g o f) = f –1 o (g–1 o g o f)
= f –1 o (g–1 o g) o f ......(As composition of functions is associative)
= f –1 o IB o f) .......(Where IB is identity function on B)
= (f –1 o IB) o f
= f –1 o f
= IA
Thus (g o f)–1 = f –1 o g –1
APPEARS IN
संबंधित प्रश्न
Let f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.
Let f, g and h be functions from R to R. Show that
`(f + g)oh = foh + goh`
`(f.g)oh = (foh).(goh)`
Find gof and fog, if f(x) = |x| and g(x) = |5x - 2|
if f(x) = `(4x + 3)/(6x - 4), x ≠ 2/3` show that fof(x) = x, for all x ≠ 2/3 . What is the inverse of f?
State with reason whether following functions have inverse h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Consider f: R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by `f^(-1) (y) = sqrt(y - 4)` where R+ is the set of all non-negative real numbers.
Let f: X → Y be an invertible function. Show that f has unique inverse. (Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = IY(y) = fog2(y). Use one-one ness of f).
If f: R → R be given by `f(x) = (3 - x^3)^(1/3)` , then fof(x) is
(A) `1/(x^3)`
(B) x3
(C) x
(D) (3 − x3)
If f: R → R is defined by f(x) = x2 − 3x + 2, find f(f(x)).
Let f : W → W be defined as f(x) = x − 1 if x is odd and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.
Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by g (x) = αx + β, then what value should be assigned to α and β
Let f: R → R be defined by f(x) = 3x 2 – 5 and g: R → R by g(x) = `x/(x^2 + 1)` Then gof is ______.
Let f: [0, 1] → [0, 1] be defined by f(x) = `{{:(x",", "if" x "is rational"),(1 - x",", "if" x "is irrational"):}`. Then (f o f) x is ______.
Let f: N → R be the function defined by f(x) = `(2x - 1)/2` and g: Q → R be another function defined by g(x) = x + 2. Then (g o f) `3/2` is ______.
Every function is invertible.
If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = `sqrtpi/2` will be ____________.
Let f : R → R be the functions defined by f(x) = x3 + 5. Then f-1(x) is ____________.
If f(x) = (ax2 – b)3, then the function g such that f{g(x)} = g{f(x)} is given by ____________.
Which one of the following functions is not invertible?
`f : x -> sqrt((3x^2 - 1)` and `g : x -> sin (x)` then `gof : x ->`?
The domain of definition of f(x) = log x2 – x + 1) (2x2 – 7x + 9) is:-
Domain of the function defined by `f(x) = 1/sqrt(sin^2 - x) log_10 (cos^-1 x)` is:-
Let 'D' be the domain of the real value function on Ir defined by f(x) = `sqrt(25 - x^2)` the D is :-
If f: A → B and G B → C are one – one, then g of A → C is
If f(x) = [4 – (x – 7)3]1/5 is a real invertible function, then find f–1(x).