हिंदी

Consider F : R+ → [−5, ∞) Given By F(X) = 9x2 + 6x − 5. Show That F Is Invertible with `F^-1 (X) = Sqrt (X +6-1)/3 .` - Mathematics

Advertisements
Advertisements

प्रश्न

Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`

योग

उत्तर

Injectivity of f :
Let x and y be two elements of domain` (R^+)`, such that
f(x)=f(y)

⇒ 9x2+6x−5=9y2+ 6y − 5

⇒ 9x2+6x=9y2+6y

⇒ x = y (As, x, y ∈ `R^+`)

So, f is one-one.

Surjectivity of f:
Let y is in the co domain (Q) such that f(x) = y

⇒ 9x2 + 6x - 5 = y

⇒ 9x2 +6x = y + 5

⇒ 9x2 + 6x +1 = y +6 (Adding 1 on both sides )

⇒ (3x +1)2 = y + 6

⇒ `3x +1 = sqrt(y + 6)`

⇒ `3x = sqrt (y + 6) -1`

⇒ `x = (sqrt (y + 6)-1)/3 in R^+` (domain)

f is onto.
So, f is a bijection and hence, it is invertible.

Finding `f^-1`

Let f−1(x) = y                 ...(1)

⇒ x = f (y)

⇒ x = 9y2+ 6y − 5

⇒ x + 5 = 9y2+6y

⇒ x + 6= 9y2+ 6y + 1         (adding 1 on both sides)

⇒ x + 6 = ( 3y + 1 )2

⇒3y+1=`sqrt(x +6)`

⇒ `3y = sqrt (x +6) -1`

⇒ `y = (sqrt (x+6)-1)/3`

`So, f^-1  (x)  (sqrt (x-6)-1)/3 ` [from (1)]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.4 [पृष्ठ ६८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.4 | Q 9 | पृष्ठ ६८

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = x3 − x


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


   if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


Let f be a function from R to R, such that f(x) = cos (x + 2). Is f invertible? Justify your answer.


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


If f(x) = 4 −( x - 7)3 then write f-1 (x).


Let

f : R → R be given by

\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]

where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
 


(d) one-one and onto


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  \[\begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 

Then, find f( \[-\]1) + f(2) + f(4)

 


Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


Which function is used to check whether a character is alphanumeric or not?


Write about strlen() function.


Let A be a finite set. Then, each injective function from A into itself is not surjective.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

A function f: x → y is said to be one – one (or injective) if:


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×