हिंदी

Let f: R → R be defined as f(x) = 3x. Choose the correct answer. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f: R → R be defined as f(x) = 3x. Choose the correct answer.

विकल्प

  • f is one-one onto

  • f is many-one onto

  • f is one-one but not onto

  • f is neither one-one nor onto

MCQ

उत्तर

f is one-one onto

Explanation:

f: R → R is defined as f(x) = 3x.

Let x, y ∈ R such that f(x) = f(y).

⇒ 3x = 3y

⇒ x = y

∴f is one-one.

Also, for any real number (y) in co-domain R, there exists `y/3` in R such that `f(y/3) = 3(y/3) = y`.

∴f is onto.

Hence, function f is one-one and onto.

The correct answer is A.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.2 [पृष्ठ ११]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.2 | Q 12 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 


Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


Write about strcmp() function.


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Which of the following functions from Z into Z is bijective?


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×