English

If a = [ 1 − 1 2 − 1 ] and B = [ a 1 B − 1 ] and ( a + B ) 2 = a 2 + B 2 , Then Find the Values of a and B. - Mathematics

Advertisements
Advertisements

Question

If  \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix} \text { and } B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix} \text { and } \left( A + B \right)^2 = A^2 + B^2\] , then find the values of a and b.

Solution

Given: \[\left( A + B \right)^2 = A^2 + B^2\]

\[\Rightarrow \left( A + B \right)\left( A + B \right) = A^2 + B^2 \]

\[ \Rightarrow A\left( A + B \right) + B\left( A + B \right) = A^2 + B^2 \]

\[ \Rightarrow A^2 + AB + BA + B^2 = A^2 + B^2 \]

\[ \Rightarrow AB + BA = O\]

So,

\[\begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}\begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix} + \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix} = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}a - b & 2 \\ 2a - b & 3\end{bmatrix} + \begin{bmatrix}a + 2 & - a - 1 \\ b - 2 & - b + 1\end{bmatrix} = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}2a - b + 2 & - a + 1 \\ 2a - 2 & - b + 4\end{bmatrix} = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]

\[ \Rightarrow 2a - b + 2 = 0, - a + 1 = 0, 2a - 2 = 0, - b + 4 = 0\]

\[ \Rightarrow a = 1, b = 4\]

Hence, the respective values of a and b are 1 and 4.
shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Foreign Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.

 

If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find: A − 2B


Given the matrices 

`A=[[2,1,1],[3,-1,0],[0,2,4]]` , `B=[[9,7,-1],[3,5,4],[2,1,6]]`  `and  C=[[2,-4,3],[1,-1,0],[9,4,5]]`

Verify that (A + B) + C = A + (B + C).

 

Find matrix A, if  `[[1         2      -1],[0         4       9]]`

`+ A = [[9        -1           4],[-2        1            3]]`


\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O


If \[A^T = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 0 & 1\end{bmatrix} and B = \begin{bmatrix}- 1 & 2 & 1 \\ 1 & 2 & 3\end{bmatrix}\] , find AT − BT.
 

 


If \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] , show that A − AT is a skewsymmetric matrix.
 

 


If \[\begin{bmatrix}x & x - y \\ 2x + y & 7\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 8 & 7\end{bmatrix}\]  , then find the value of y.


If  \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.


If matrix  \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\]  and A2 = pA, then write the value of p.

 


If \[\begin{bmatrix}a + 4 & 3b \\ 8 & - 6\end{bmatrix} = \begin{bmatrix}2a + 2 & b + 2 \\ 8 & a - 8b\end{bmatrix}\] , write the value of a − 2b.

 


If \[A = \begin{bmatrix}0 & 2 \\ 3 & - 4\end{bmatrix}\]  and \[kA = \begin{bmatrix}0 & 3a \\ 2b & 24\end{bmatrix}\]  then the values of kab, are respectively 


Find matrix X so that `x ((1,2,3),(4,5,6)) = ((-7,-8,-9),(2,4,6))`.


If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.


Matrix subtraction is associative


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: (AB)C = A(BC)


If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (A – B)′ = A′ – B′


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: a(C – A) = aC – aA


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)C = AC – BC 


If A and B are two matrices of the same order, then A – B = B – A.


If A `= [(2,2,1),(1,3,1),(1,2,2)], "then"  "A"^4 - 2 ^4` (A - I) = ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×