Advertisements
Advertisements
Question
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: a(C – A) = aC – aA
Solution
We have,
A = `[(1, 2),(-1, 3)]`
B = `[(4, 0),(1, 5)]`
C = `[(2, 0),(1, -2)]`
And a = 4, b = –2
C – A = `[(, ),(1, -2)] - [(1, 2),(-1, 3)]`
= `[(1, -2),(2, -5)]`
And a(C – A) = 4(C – A)
= `[(4, -8),(8, -20)]`
Also, aC – aA = 4C – 4A
= `[(8, 0),(4, -8)] - [(4, 8),(-4,12)]`
= `[(4, -8),(8, -20)]`
= a(C – A)
Hence proved
APPEARS IN
RELATED QUESTIONS
if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find: A − 2B
Find matrix A, if `[[1 2 -1],[0 4 9]]`
`+ A = [[9 -1 4],[-2 1 3]]`
\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O
If `[x 2] [[3],[4]] = 2` , find x
If \[\begin{bmatrix}x & x - y \\ 2x + y & 7\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 8 & 7\end{bmatrix}\] , then find the value of y.
If \[\begin{bmatrix}9 & - 1 & 4 \\ - 2 & 1 & 3\end{bmatrix} = A + \begin{bmatrix}1 & 2 & - 1 \\ 0 & 4 & 9\end{bmatrix}\] , then find matrix A.
If \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.
If matrix \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\] and A2 = pA, then write the value of p.
If \[A = \begin{bmatrix}0 & 2 \\ 3 & - 4\end{bmatrix}\] and \[kA = \begin{bmatrix}0 & 3a \\ 2b & 24\end{bmatrix}\] then the values of k, a, b, are respectively
Find matrix X so that `x ((1,2,3),(4,5,6)) = ((-7,-8,-9),(2,4,6))`.
If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix} \text { and } B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix} \text { and } \left( A + B \right)^2 = A^2 + B^2\] , then find the values of a and b.
Matrix subtraction is associative
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: (AB)C = A(BC)
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)C = AC – BC
Matrices of different orders can not be subtracted.
If A and B are two matrices of the same order, then A – B = B – A.
If A `= [(2,2,1),(1,3,1),(1,2,2)], "then" "A"^4 - 2 ^4` (A - I) = ____________.