Advertisements
Advertisements
Question
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)C = AC – BC
Solution
We have,
A = `[(1, 2),(-1, 3)]`
B = `[(4, 0),(1, 5)]`
C = `[(2, 0),(1, -2)]` a
And a = 4, b = –2
(A – B) = `[(1, 2),(-1, 3)] - [(4, 0),(1, 5)]`
= `[(1 - 4, 2 - 0),(-1 - 1, 3 - 5)]`
= `[(-3, 2),(-2, -2)]`
∴ (A – B)C = `[(-3, 2),(-2, -2)] [(2, 0),(1, -2)]`
= `[(-4, -4),(-6, 4)]`
Now, AC = `[(1, 2),(-1, 3)] [(2, 0),(1, -2)]`
= `[(4, -4),(1, -6)]`
And BC = `[(4, 0),(1, 5)] [(2, 0),(1, -2)]`
= `[(8, 0),(7, -10)]`
∴ AC – BC = `[(4 - 8, -4 -0),(1 - 7, -6 + 10)]`
= `[(-4, -4),(-6, 4)]`
= (A – B)C
Hence proved.
APPEARS IN
RELATED QUESTIONS
if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find: A − 2B
Find matrix A, if `[[1 2 -1],[0 4 9]]`
`+ A = [[9 -1 4],[-2 1 3]]`
\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O
If `[x 2] [[3],[4]] = 2` , find x
If matrix \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\] and A2 = pA, then write the value of p.
If \[\begin{bmatrix}a + 4 & 3b \\ 8 & - 6\end{bmatrix} = \begin{bmatrix}2a + 2 & b + 2 \\ 8 & a - 8b\end{bmatrix}\] , write the value of a − 2b.
Find matrix X so that `x ((1,2,3),(4,5,6)) = ((-7,-8,-9),(2,4,6))`.
If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.
Matrix subtraction is associative
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: (AB)C = A(BC)
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: a(C – A) = aC – aA
Matrices of different orders can not be subtracted.
If A and B are two matrices of the same order, then A – B = B – A.
If A `= [(2,2,1),(1,3,1),(1,2,2)], "then" "A"^4 - 2 ^4` (A - I) = ____________.