Advertisements
Advertisements
Question
If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.
Solution
\[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\]
\[ A^2 = A \cdot A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\]
\[ = \begin{bmatrix}5 & - 4 \\ - 4 & 5\end{bmatrix}\]
Also,
\[4A = 4\begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix} = \begin{bmatrix}8 & - 4 \\ - 4 & 8\end{bmatrix}\]
\[3I = 3\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = \begin{bmatrix}3 & 0 \\ 0 & 3\end{bmatrix}\]
\[\therefore 4A - 3I = \begin{bmatrix}8 & - 4 \\ - 4 & 8\end{bmatrix} - \begin{bmatrix}3 & 0 \\ 0 & 3\end{bmatrix}\]
\[ = \begin{bmatrix}5 & - 4 \\ - 4 & 5\end{bmatrix}\]
\[ = A^2\]
\[\therefore 4A - 3I = \begin{bmatrix}8 & - 4 \\ - 4 & 8\end{bmatrix} - \begin{bmatrix}3 & 0 \\ 0 & 3\end{bmatrix}\]
\[ = \begin{bmatrix}5 & - 4 \\ - 4 & 5\end{bmatrix}\]
\[ = A^2\]
Hence,
\[4A - 3I = A^2\]
Now,
\[3I = 4A - A^2\]
Pre-multiply both sides by
\[A^{- 1}\] , we get
\[3 A^{- 1} I = 4 A^{- 1} A - A^{- 1} A \cdot A\]
\[ \Rightarrow 3 A^{- 1} = 4I - I \cdot A \left( A^{- 1} A = I \right)\]
\[ \Rightarrow 3 A^{- 1} = 4I - A \left( I \cdot A = A \right)\]
\[ \Rightarrow 3 A^{- 1} = 4\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} - \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\]
\[ \Rightarrow 3 A^{- 1} = \begin{bmatrix}4 & 0 \\ 0 & 4\end{bmatrix} - \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix} = \begin{bmatrix}2 & 1 \\ 1 & 2\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{3}\begin{bmatrix}2 & 1 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3}\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find: A − 2B
\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O
Show that the matrix \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]satisfies the equation A3 − 4A2 + A = O
If \[\begin{bmatrix}x & x - y \\ 2x + y & 7\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 8 & 7\end{bmatrix}\] , then find the value of y.
If \[\begin{bmatrix}9 & - 1 & 4 \\ - 2 & 1 & 3\end{bmatrix} = A + \begin{bmatrix}1 & 2 & - 1 \\ 0 & 4 & 9\end{bmatrix}\] , then find matrix A.
If \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.
If matrix \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\] and A2 = pA, then write the value of p.
If \[\begin{bmatrix}a + 4 & 3b \\ 8 & - 6\end{bmatrix} = \begin{bmatrix}2a + 2 & b + 2 \\ 8 & a - 8b\end{bmatrix}\] , write the value of a − 2b.
If \[A = \begin{bmatrix}0 & 2 \\ 3 & - 4\end{bmatrix}\] and \[kA = \begin{bmatrix}0 & 3a \\ 2b & 24\end{bmatrix}\] then the values of k, a, b, are respectively
Find matrix X so that `x ((1,2,3),(4,5,6)) = ((-7,-8,-9),(2,4,6))`.
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix} \text { and } B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix} \text { and } \left( A + B \right)^2 = A^2 + B^2\] , then find the values of a and b.
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: (AB)C = A(BC)
If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (A – B)′ = A′ – B′
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: a(C – A) = aC – aA
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)C = AC – BC
Matrices of different orders can not be subtracted.
If A and B are two matrices of the same order, then A – B = B – A.
If A `= [(2,2,1),(1,3,1),(1,2,2)], "then" "A"^4 - 2 ^4` (A - I) = ____________.