Advertisements
Advertisements
Question
Solution
\[Given: \hspace{0.167em} A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]
\[ A^T = \begin{bmatrix}3 & 1 \\ - 4 & - 1\end{bmatrix}\]
\[Now, \]
\[A - A^T = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix} - \begin{bmatrix}3 & 1 \\ - 4 & - 1\end{bmatrix}\]
\[ \Rightarrow A - A^T = \begin{bmatrix}3 - 3 & - 4 - 1 \\ 1 + 4 & - 1 + 1\end{bmatrix}\]
\[ \Rightarrow A - A^T = \begin{bmatrix}0 & - 5 \\ 5 & 0\end{bmatrix} . . . \left( 1 \right)\]
\[ \left( A - A^T \right)^T = \begin{bmatrix}0 & - 5 \\ 5 & 0\end{bmatrix}^T \]
\[ \Rightarrow \left( A - A^T \right)^T = \begin{bmatrix}0 & 5 \\ - 5 & 0\end{bmatrix}\]
\[ \Rightarrow \left( A - A^T \right)^T = - \begin{bmatrix}0 & - 5 \\ 5 & 0\end{bmatrix}\] \[ \Rightarrow \left( A - A^T \right)^T = - \left( A - A^T \right) \left[ \text{From eq .} \left( 1 \right) \right]\]
Thus, `(A -A^T)` is a skew symmetric matrix.
APPEARS IN
RELATED QUESTIONS
if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find: A − 2B
Given the matrices
`A=[[2,1,1],[3,-1,0],[0,2,4]]` , `B=[[9,7,-1],[3,5,4],[2,1,6]]` `and C=[[2,-4,3],[1,-1,0],[9,4,5]]`
Verify that (A + B) + C = A + (B + C).
Find matrix A, if `[[1 2 -1],[0 4 9]]`
`+ A = [[9 -1 4],[-2 1 3]]`
\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O
Show that the matrix \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]satisfies the equation A3 − 4A2 + A = O
If `[x 2] [[3],[4]] = 2` , find x
If \[\begin{bmatrix}9 & - 1 & 4 \\ - 2 & 1 & 3\end{bmatrix} = A + \begin{bmatrix}1 & 2 & - 1 \\ 0 & 4 & 9\end{bmatrix}\] , then find matrix A.
If \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.
If matrix \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\] and A2 = pA, then write the value of p.
If \[\begin{bmatrix}a + 4 & 3b \\ 8 & - 6\end{bmatrix} = \begin{bmatrix}2a + 2 & b + 2 \\ 8 & a - 8b\end{bmatrix}\] , write the value of a − 2b.
If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix} \text { and } B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix} \text { and } \left( A + B \right)^2 = A^2 + B^2\] , then find the values of a and b.
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: (AB)C = A(BC)
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: a(C – A) = aC – aA
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (A – B)C = AC – BC
Matrices of different orders can not be subtracted.
If A and B are two matrices of the same order, then A – B = B – A.
If A `= [(2,2,1),(1,3,1),(1,2,2)], "then" "A"^4 - 2 ^4` (A - I) = ____________.