हिंदी

Differentiate Sin − 1 ( 1 − 2 X 2 ) , 0 < X < 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?

योग

उत्तर

\[\text{ Let, y } = \sin^{- 1} \left\{ 1 - 2 x^2 \right\}\]

\[\text { put x } = \sin \theta\]

\[ \Rightarrow y = \sin^{- 1} \left\{ 1 - 2 \sin^2 \theta \right\}\]

\[ \Rightarrow y = \sin^{- 1} \left( \cos2\theta \right)\]

\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( \frac{\pi}{2} - 2\theta \right) \right\} .......... \left( 1 \right) \]

\[\text{ Here} , 0 < x < 1\]

\[ \Rightarrow 0 < \sin \theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[ \Rightarrow 0 < 2\theta < \pi\]

\[ \Rightarrow 0 > - 2\theta > - \pi\]

\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - 2\theta \right) > \frac{\pi}{2} - \pi\]

\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - 2\theta \right) > - \frac{\pi}{2}\]

\[ \Rightarrow - \frac{\pi}{2} < \left( \frac{\pi}{2} - 2\theta \right) < \frac{\pi}{2}\]

\[\text{ So, from equation } \left( 1 \right), \]

\[ y = \frac{\pi}{2} - 2\theta \left[ \text{ Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if } \theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]

\[ \Rightarrow y = \frac{\pi}{2} - 2 \sin^{- 1} x \left[ \text{ Since}, x = \sin \theta \right]\]

\[\text{Differentiating it with respect to x }, \]

\[ \frac{d y}{d x} = 0 - 2\left( \frac{1}{\sqrt{1 - x^2}} \right)\]

\[ \therefore \frac{d y}{d x} = - \frac{2}{\sqrt{1 - x^2}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.03 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.03 | Q 8 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cos x ?


Differentiate the following functions from first principles x2ex ?


Differentiate the following functions from first principles log cosec x ?


Differentiate \[3^{e^x}\] ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


Find the minimum value of (ax + by), where xy = c2.


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×