हिंदी

Differentiate Cos − 1 ( 4 X 3 − 3 X ) with Respect to Tan − 1 ( √ 1 − X 2 X ) , I F 1 2 < X < 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 

योग

उत्तर

\[\text { Let, u } = \cos^{- 1} \left( 4 x^3 - 3x \right)\]

\[\text { Put, x } = \cos\theta\]

\[ \Rightarrow \theta = \cos^{- 1} x\]

\[\text { Now, u }= \cos^{- 1} \left( 4 \cos^3 \theta - 3\cos\theta \right)\]

\[ \Rightarrow u = \cos^{- 1} \left( \cos3\theta \right) . . . \left( i \right)\]

\[\text {  Let, v } = \tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right)\]

\[ \Rightarrow v = \tan^{- 1} \left( \frac{\sqrt{1 - \cos^2 \theta}}{\cos\theta} \right) \]

\[ \Rightarrow v = \tan^{- 1} \left( \frac{\sin\theta}{\cos\theta} \right)\]

\[ \Rightarrow v = \tan^{- 1} \left( \tan\theta \right) . . . \left( ii \right)\]

\[\text { Here }, \]

\[ \frac{1}{2} < x < 1\]

\[ \Rightarrow \frac{1}{2} < \cos\theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{3}\]

\[\text { So, from equation } \left( i \right), \]

\[u = 3\theta .........\left[ \text { Since }, \cos^{- 1} \left( \cos\theta \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow u = 3 \cos^{- 1} x\]

Differentiating it with respect to x,

\[\frac{du}{dx} = \frac{- 3}{\sqrt{1 - x^2}} . . . \left( iii \right)\]

\[\text{ From equation } \left( ii \right), \]

\[v = \theta ..........\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]

\[ \Rightarrow v = \cos^{- 1} x\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]

\[\text { Dividing equation} \left( iii \right) \text { by } \left( iv \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \left( \frac{- 3}{\sqrt{1 - x^2}} \right)\left( - \frac{\sqrt{1 - x^2}}{1} \right)\]

\[ \therefore \frac{du}{dv} = 3\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.08 [पृष्ठ ११३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.08 | Q 16 | पृष्ठ ११३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles log cos x ?


Differentiate the following functions from first principles x2ex ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[\left( \tan x \right)^{1/x}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate (log x)x with respect to log x ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function tan−1 x ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×