Advertisements
Advertisements
प्रश्न
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
उत्तर
\[\text{Here, y }= \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right)\]
\[\text{Put x }= \cos2\theta\]
\[ \therefore y = \tan^{- 1} \left( \frac{\sqrt{1 + \cos2\theta} - \sqrt{1 - \cos2\theta}}{\sqrt{1 + \cos2\theta} + \sqrt{1 - \cos2\theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{\sqrt{2 \cos^2 \theta} - \sqrt{2 \sin^2 \theta}}{\sqrt{2 \cos^2 \theta} + \sqrt{2 \sin^2 \theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{\sqrt{2}\left( \cos\theta - sin\theta \right)}{\sqrt{2}\left( \cos\theta + sin\theta \right)} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{\cos\theta - sin\theta}{\cos\theta}}{\frac{\cos\theta + \sin\theta}{\cos\theta}} \right) \left[ \text{Dividing numerator and denominator by } \cos\theta \right]\]
\[ = \tan^{- 1} \left( \frac{\frac{\cos\theta}{\cos\theta} - \frac{\sin\theta}{\cos\theta}}{\frac{\cos\theta}{\cos\theta} + \frac{\sin\theta}{\cos\theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{1 - \tan\theta}{1 + \tan\theta} \right)\]
\[ = \tan^{- 1} \left( \frac{\tan\frac{\pi}{4} - \tan\theta}{1 + \tan\frac{\pi}{4} \times \tan\theta} \right) \]
\[ = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} - \theta \right) \right] \]
\[ = \frac{\pi}{4} - \theta\]
\[ = \frac{\pi}{4} - \frac{1}{2} \cos^{- 1} x \left( \text{ Using x }= \cos2\theta \right)\]
Differentiate it with respect to x,
\[\frac{d y}{d x} = 0 - \frac{1}{2}\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\]
\[ \therefore \frac{d y}{d x} = \frac{1}{2\sqrt{1 - x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate sin (3x + 5) ?
Differentiate tan 5x° ?
Differentiate \[3^{e^x}\] ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function ex sin 5x ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .