हिंदी

If Y = Tan − 1 ( √ 1 + X − √ 1 − X √ 1 + X + √ 1 − X ) , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?

उत्तर

\[\text{Here, y  }= \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right)\]

\[\text{Put x  }= \cos2\theta\]

\[ \therefore y = \tan^{- 1} \left( \frac{\sqrt{1 + \cos2\theta} - \sqrt{1 - \cos2\theta}}{\sqrt{1 + \cos2\theta} + \sqrt{1 - \cos2\theta}} \right)\]

\[ = \tan^{- 1} \left( \frac{\sqrt{2 \cos^2 \theta} - \sqrt{2 \sin^2 \theta}}{\sqrt{2 \cos^2 \theta} + \sqrt{2 \sin^2 \theta}} \right)\]

\[ = \tan^{- 1} \left( \frac{\sqrt{2}\left( \cos\theta - sin\theta \right)}{\sqrt{2}\left( \cos\theta + sin\theta \right)} \right)\]

\[ = \tan^{- 1} \left( \frac{\frac{\cos\theta - sin\theta}{\cos\theta}}{\frac{\cos\theta + \sin\theta}{\cos\theta}} \right) \left[ \text{Dividing numerator and denominator by } \cos\theta \right]\]

\[ = \tan^{- 1} \left( \frac{\frac{\cos\theta}{\cos\theta} - \frac{\sin\theta}{\cos\theta}}{\frac{\cos\theta}{\cos\theta} + \frac{\sin\theta}{\cos\theta}} \right)\]

\[ = \tan^{- 1} \left( \frac{1 - \tan\theta}{1 + \tan\theta} \right)\]

\[ = \tan^{- 1} \left( \frac{\tan\frac{\pi}{4} - \tan\theta}{1 + \tan\frac{\pi}{4} \times \tan\theta} \right) \]

\[ = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} - \theta \right) \right] \]

\[ = \frac{\pi}{4} - \theta\]

\[ = \frac{\pi}{4} - \frac{1}{2} \cos^{- 1} x \left( \text{ Using x  }= \cos2\theta \right)\]

Differentiate it with respect to x,

\[\frac{d y}{d x} = 0 - \frac{1}{2}\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\]

 

\[ \therefore \frac{d y}{d x} = \frac{1}{2\sqrt{1 - x^2}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.03 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.03 | Q 45 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles ecos x.


Differentiate sin (3x + 5) ?


Differentiate tan 5x° ?


Differentiate \[3^{e^x}\] ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( \log x \right)^x\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


Find the second order derivatives of the following function ex sin 5x  ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×