Advertisements
Advertisements
प्रश्न
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
विकल्प
`2`
\[\frac{1}{2 \sqrt{1 - x^2}}\]
\[2/x\]
\[1 - x^2\]
उत्तर
`2`
\[\text { Let u } = \cos^{- 1} \left( 2 x^2 - 1 \right)\]
\[\text { Put x } = \cos\theta\]
\[ \Rightarrow \theta = \cos^{- 1} x\]
\[\frac{d\theta}{dx} = \frac{- 1}{\sqrt{1 - x^2}}\]
\[\text { Now, u } = \cos^{- 1} \left( \cos2\theta \right)\]
\[ \Rightarrow u = 2\theta\]
\[\Rightarrow \frac{du}{dx} = 2\frac{d\theta}{dx}\]
\[ \Rightarrow \frac{du}{dx} = \frac{- 2}{\sqrt{1 - x^2}} . . . \left( i \right)\]
\[\text { and,} \]
\[ v = \cos^{- 1} x\]
\[ \Rightarrow v = \cos^{- 1} \left( \cos\theta \right)\]
\[ \Rightarrow v = \theta\]
\[\frac{dv}{dx} = \frac{d\theta}{dx}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( ii \right)\]
\[\text { Dividing } \left( i \right) \text { by }\left( ii \right), \text { we get }, \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{- 2}{\sqrt{1 - x^2}} \times \frac{\sqrt{1 - x^2}}{- 1}\]
\[ \Rightarrow \frac{du}{dv} = 2\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate tan (x° + 45°) ?
Differentiate sin2 (2x + 1) ?
Differentiate log7 (2x − 3) ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
Find the second order derivatives of the following function e6x cos 3x ?
Find the second order derivatives of the following function tan−1 x ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y = etan x, then (cos2 x)y2 =
Find the minimum value of (ax + by), where xy = c2.