Advertisements
Advertisements
प्रश्न
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
उत्तर
\[\text{ We have, xy } \log\left( x + y \right) = 1\]
Differentiating it with respect to x,
\[\Rightarrow \frac{d}{dx}\left[ xy \log\left( x + y \right) \right] = \frac{d}{dx}\left( 1 \right)\]
\[ \Rightarrow xy\frac{d}{dx}\log\left( x + y \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right)\frac{d}{dx}\left( x \right) = 0 \left[ \text{ using chain rule and product rule } \right]\]
\[ \Rightarrow xy\left( \frac{1}{x + y} \right)\frac{d}{dx}\left( x + y \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right)\left( 1 \right) = 0\]
\[ \Rightarrow \left( \frac{xy}{x + y} \right) \left( 1 + \frac{d y}{d x} \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right) = 0\]
\[ \Rightarrow \left( \frac{xy}{x + y} \right)\frac{d y}{d x} + \left( \frac{xy}{x + y} \right) + x\left( \frac{1}{xy} \right)\frac{d y}{d x} + y\left( \frac{1}{xy} \right) = 0 \left[ \because xy \log\left( x + y \right) = 1 \right]\]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{xy}{x + y} + \frac{1}{y} \right] = - \left[ \frac{1}{x} + \frac{xy}{x + y} \right]\]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{x y^2 + x + y}{\left( x + y \right)y} \right] = - \left[ \frac{x + y + x^2 y}{x\left( x + y \right)} \right]\]
\[ \Rightarrow \frac{d y}{d x} = - \left[ \frac{x + y + x^2 y}{x\left( x + y \right)} \right]\left[ \frac{y\left( x + y \right)}{x y^2 + x + y} \right]\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{y}{x}\left( \frac{x + y + x^2 y}{x + y + x y^2} \right)\]
Hence proved
APPEARS IN
संबंधित प्रश्न
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function sin (log x) ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Find the minimum value of (ax + by), where xy = c2.
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.