मराठी

On R − {1}, a Binary Operation * is Defined by a * B = a + B − Ab. Prove that * is Commutative and Associative. Find the Identity Element for * on R − {1}. Also, Prove that Every Element of R − - Mathematics

Advertisements
Advertisements

प्रश्न

On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.

उत्तर

Commutativity:

\[\text{ Let }a, b \in R - \left\{ 1 \right\} . \text{Then}, \] 
\[a * b = a + b - ab\] 
       \[ = b + a - ba\] 
       \[ = b * a\] 
\[\text{Therefore},\] 
\[a * b = b * a, \forall a, b \in R - \left\{ 1 \right\}\]

Thus, * is commutative on R \[-\] { 1 }

Associativity :

\[\text{ Let }a, b, c \in R - \left\{ 1 \right\} . \text{ Then }, \] 
\[a * \left( b * c \right) = a * \left( b + c - bc \right)\] 
              \[ = a + b + c - bc - a\left( b + c - bc \right)\] 
              \[ = a + b + c - bc - ab - ac + abc\] 
\[\left( a * b \right) * c = \left( a + b - ab \right) * c\] 
             \[ = a + b - ab + c - \left( a + b - ab \right)c\] 
              \[ = a + b + c - ab - ac - bc + abc\] 
\[\text{Therefore},\] 
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in R - \left\{ 1 \right\}\] 

Thus, * is associative on R \[-\] {1} .

Finding identity element:
Let e be the identity element in R \[-\] {1} with respect to * such that

\[a * e = a = e * a, \forall a \in R - \left\{ 1 \right\}\] 
\[a * e = a \text{ and }e * a = a, \forall a \in R - \left\{ 1 \right\}\] 
\[ \Rightarrow a + e - ae = a \text{ and }e + a - ea = a, \forall a \in R - \left\{ 1 \right\}\] 
\[e\left( 1 - a \right) = 0, \forall a \in R - \left\{ 1 \right\}\] 
\[e = 0 \in \forall a \in R - \left\{ 1 \right\}, \forall a \in R - \left\{ 1 \right\} \left[ \because a \neq 1 \right]\]

Thus, 0 is the identity element in R  \[-\] {1} with respect to *

Finding inverse :

\[\text{ Let }a \in R - \left\{ 1 \right\} \text{ and }b \in R - \left\{ 1 \right\}\text{be the inverse of a . Then},\] 
\[a * b = e = b * a\] 
\[a * b = e \text{ and }b * a = e\] 
\[ \Rightarrow a + b - ab = 0 \text{ and }b + a - ba = 0\] 
\[ \Rightarrow a = ab - b\] 
\[ \Rightarrow a = b\left( a - 1 \right) \] 
\[ \Rightarrow b = \frac{a}{a - 1}\] 
\[\text{Thus},\frac{a}{a - 1} \text{is the inverse of a} \in R - \left\{ 1 \right\} . \] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.4 | Q 6 | पृष्ठ २५

संबंधित प्रश्‍न

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by *′ = H.C.F. of and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.


Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is a binary operation on S ?


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]

 Show that * is commutative as well as associative. Also, find its identity element if it exists.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Define a commutative binary operation on a set.


Write the total number of binary operations on a set consisting of two elements.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{  a^2 + b^2} \text{for all a, b } \in R .\]

Write the identity element for * on R.


If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .


Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b for a, b ∈ Q


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = `"ab"/4` for a, b ∈ Q.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a – b ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


A binary operation A × A → is said to be associative if:-


Subtraction and division are not binary operation on.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×