Advertisements
Advertisements
प्रश्न
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
उत्तर
On Z, * is defined by a * b = a − b.
It can be observed that 1 * 2 = 1 − 2 = 1 and 2 * 1 = 2 − 1 = 1.
∴1 * 2 ≠ 2 * 1; where 1, 2 ∈ Z
Hence, the operation * is not commutative.
Also we have:
(1 * 2) * 3 = (1 − 2) * 3 = −1 * 3 = −1 − 3 = −4
1 * (2 * 3) = 1 * (2 − 3) = 1 * −1 = 1 − (−1) = 2
∴(1 * 2) * 3 ≠ 1 * (2 * 3) ; where 1, 2, 3 ∈ Z
Hence, the operation * is not associative.
APPEARS IN
संबंधित प्रश्न
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = ab + 1
Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by a *′ b = H.C.F. of a and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define by a*b = ab2
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, define * by a * b = a
Here, Z+ denotes the set of all non-negative integers.
The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.
Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
Find the inverse of 5 under multiplication modulo 11 on Z11.
Define a binary operation on a set.
Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]
Write the value of x given by 2 * (x * 5) = 10.
For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\]
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .
Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .
Subtraction of integers is ___________________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
Determine whether * is a binary operation on the sets-given below.
a * b = min (a, b) on A = {1, 2, 3, 4, 5}
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.
A binary operation on a set has always the identity element.