Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0. Hence find whether the plane thus obtained contains the line \[\frac{x + 2}{5} = \frac{y - 3}{4} = \frac{z}{5}\] or not.
उत्तर
\[\text { The equation of the plane passing through the line of intersection of the given planes is }\]
\[x + y + z - 1 + \lambda \left( 2x + 3y + 4z - 5 \right) = 0 \]
\[\left( 1 + 2\lambda \right)x + \left( 1 + 3\lambda \right)y + \left( 1 + 4\lambda \right)z - 1 - 5\lambda = 0 . . . \left( 1 \right)\]
\[\text { This plane is perpendicular to }x - y + z = 0 . So,\]
\[1 + 2\lambda - 1 \left( 1 + 3\lambda \right) + 1 + 4\lambda = 0 (\text { Because }a_1 a_2 + b_1 b_2 + c_1 c_2 = 0)\]
\[ \Rightarrow 1 + 2\lambda - 1 - 3\lambda + 1 + 4\lambda = 0\]
\[ \Rightarrow 3\lambda + 1 = 0\]
\[ \Rightarrow \lambda = \frac{- 1}{3}\]
\[\text { Substituting this in (1), we get }\]
\[\left( 1 + 2 \left( \frac{- 1}{3} \right) \right)x + \left( 1 + 3 \left( \frac{- 1}{3} \right) \right)y + \left( 1 + 4 \left( \frac{- 1}{3} \right) \right)z - 1 - 5 \left( \frac{- 1}{3} \right) = 0\]
\[ \Rightarrow x - z + 2 = 0\]
We know that if
\[\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}\] lies in the plane ax + by + cz + d = 0 then,
ax1 + by1 + cz1 + d = 0 and al + bm + cn = 0.
So, if the line
\[\frac{x + 2}{5} = \frac{y - 3}{4} = \frac{z}{5}\] lies in the plane x − z + 2 = 0 then,
\[1 \times \left( - 2 \right) + 0 \times 3 + \left( - 1 \right) \times 0 + 2 = - 2 + 2 = 0\]
Also,
\[1 \times 5 + 0 \times 4 + \left( - 1 \right) \times 5 = 5 - 5 = 0\]
Hence, the given line lies in the plane x − z + 2 = 0.
APPEARS IN
संबंधित प्रश्न
If `veca=xhati+2hatj-zhatk and vecb=3hati-yhatj+hatk` are two equal vectors ,then write the value of x+y+z
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are position vectors of the vertices A, B and C respectively, of a triangle ABC, write the value of \[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} .\]
Write the position vector of a point dividing the line segment joining points having position vectors \[\hat{i} + \hat{j} - 2 \hat{k} \text{ and }2 \hat{i} - \hat{j} + 3 \hat{k}\] externally in the ratio 2:3.
Find a unit vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - 3 \hat{j} + 6 \hat{k}\].
If three points A, B and C have position vectors \[\hat{i} + x \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\text{ and }y \hat{i} - 2 \hat{j} - 5 \hat{k}\] respectively are collinear, then (x, y) =
If OACB is a parallelogram with \[\overrightarrow{OC} = \vec{a}\text{ and }\overrightarrow{AB} = \vec{b} ,\] then \[\overrightarrow{OA} =\]
Find the components along the coordinate axes of the position vector of the following point :
S(4, –3)
If `veca` and `vecb` are non- collinear vectors, find the value of x such that the vectors `barα = (x - 2)veca + vecb` and `barβ = (3+2x)bara - 2barb` are collinear.
If` vec"a" = 2hat"i" + 3hat"j" + + hat"k", vec"b" = hat"i" - 2hat"j" + hat"k" "and" vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`
The vector `bar"a"` is directed due north and `|bar"a"|` = 24. The vector `bar"b"` is directed due west and `|bar"b"| = 7`. Find `|bar"a" + bar"b"|`.
Select the correct option from the given alternatives:
Let α, β, γ be distinct real numbers. The points with position vectors `alphahat"i" + betahat"j" + gammahat"k", betahat"i" + gammahat"j" + alphahat"k", gammahat"i" + alphahat"j" + betahat"k"`
If `bar"a", bar"b", bar"c"` are unit vectors such that `bar"a" + bar"b" + bar"c" = bar0,` then find the value of `bar"a".bar"b" + bar"b".bar"c" + bar"c".bar"a".`
Let bar"b" = 4hat"i" + 3hat"j" and bar"c" be two vectors perpendicular to each other in the XY-plane. Find the vector in the same plane having projection 1 and 2 along bar"b" and bar"c" respectively.
Show that no line in space can make angles `pi/6` and `pi/4` with X-axis and Y-axis.
State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:
`(bar"a" xx bar"b").(bar"c"xxbar"d")`
State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:
`(bar"a".bar"b")bar"c"`
For any vectors `bar"a", bar"b", bar"c"` show that `(bar"a" + bar"b" + bar"c") xx bar"c" + (bar"a" + bar"b" + bar"c") xx bar"b" + (bar"b" - bar"c") xx bar"a" = 2bar"a" xx bar"c"`
lf `overlinea`, `overlineb` and `overlinec` are unit vectors such that `overlinea + overlineb + overlinec = overline0` and angle between `overlinea` and `overlineb` is `pi/3`, then `|overlinea xx overlineb| + |overlineb xx overlinec| + |overlinec xx overlinea|` = ______
The area of the parallelogram whose adjacent sides are `hat"i" + hat"k"` and `2hat"i" + hat"j" + hat"k"` is ______.
If `vec"a"` is any non-zero vector, then `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` equals ______.
In Figure, identify the following vector.
Collinear but not equal
The unit vector perpendicular to the vectors `6hati + 2hatj + 3hatk` and `3hati - 6hatj - 2hatk` is
If `veca` and `vecb` are two collinear vectors then which of the following are incorrect.
The angles of a triangle, two of whose sides are represented by the vectors `sqrt(3)(veca xx vecb)` and `vecb - (veca.vecb)veca` where `vecb` is a non-zero vector and `veca` is a unit vector are ______.
Unit vector along `vec(PQ)`, where coordinates of P and Q respectively are (2, 1, – 1) and (4, 4, – 7), is ______.
Find the value of λ for which the points (6, – 1, 2), (8, – 7, λ) and (5, 2, 4) are collinear.
Check whether the vectors `2hati+2hatj+3hatk,-3hati+3hatj+2hatk` and `3hati+4hatk` form a triangle or not.
In the triangle PQR, `bar(PQ)`= 2`bar a` and `bar(QR)`= 2`bar b` . The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`
Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not.
In the triangle PQR, `bar(PQ) = 2bara and bar(QR) = 2barb`. The mid-point of PR is M. Find the following vectors in terms of `bara and barb`.
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`