हिंदी

For any vectors abca¯,b¯,c¯ show that abccabcbbcaac(a¯+b¯+c¯)×c¯+(a¯+b¯+c¯)×b¯+(b¯-c¯)×a¯=2a¯×c¯ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For any vectors `bar"a", bar"b", bar"c"` show that `(bar"a" + bar"b" + bar"c") xx bar"c" + (bar"a" + bar"b" + bar"c") xx bar"b" + (bar"b" - bar"c") xx bar"a" = 2bar"a" xx bar"c"`

योग

उत्तर

LHS = `(bar"a" + bar"b" + bar"c") xx bar"c" + (bar"a" + bar"b" + bar"c") xx bar"b" + (bar"b" - bar"c") xx bar"a"`

`= bar"a" xx bar"c" + bar"b" xx bar"c" + bar"c" xx bar"c" + bar"a" xx bar"b" + bar"b" xx bar"b" + bar"c" xx bar"b" + bar"b" xx bar"a" - bar"c" xx bar"a"`

`= bar"a" xx bar"c" + bar"b" xx bar"c" + bar0 + bar"a" xx bar"b" + bar"0" - bar"b" xx bar"c" - bar"a" xx bar"b" + bar"a" xx bar"c" ......[because bar"a" xx bar"b" = - bar"b" xx bar"a"]`

`= 2bar"a" xx bar"c"` = RHS.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Vectors - Miscellaneous exercise 5 [पृष्ठ १९२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Vectors
Miscellaneous exercise 5 | Q II. 35) | पृष्ठ १९२

संबंधित प्रश्न

If \[\vec{a}\] and \[\vec{b}\] represent two adjacent sides of a parallelogram, then write vectors representing its diagonals.


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] represent the sides of a triangle taken in order, then write the value of \[\vec{a} + \vec{b} + \vec{c} .\]


Find a unit vector in the direction of the vector \[\overrightarrow{a} = 3 \hat{i} - 2 \hat{j} + 6 \hat{k}\].


If points A (60 \[\hat{i}\] + 3 \[\hat{j}\]), B (40 \[\hat{i}\] − 8 \[\hat{j}\]) and C (a \[\hat{i}\] − 52 \[\hat{j}\]) are collinear, then a is equal to


If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then \[O \vec{A} + O \vec{B} + O \vec{C} + O \vec{D} =\] 


If O and O' are circumcentre and orthocentre of ∆ ABC, then \[\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}\] equals 


If three points A, B and C have position vectors \[\hat{i} + x \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\text{ and }y \hat{i} - 2 \hat{j} - 5 \hat{k}\] respectively are collinear, then (x, y) =


If OACB is a parallelogram with \[\overrightarrow{OC} = \vec{a}\text{ and }\overrightarrow{AB} = \vec{b} ,\] then \[\overrightarrow{OA} =\]


Select the correct option from the given alternatives:

The volume of tetrahedron whose vectices are (1,-6,10), (-1, -3, 7), (5, -1, λ) and (7, -4, 7) is 11 cu units, then the value of λ is


Select the correct option from the given alternatives:

Let α, β, γ be distinct real numbers. The points with position vectors `alphahat"i" + betahat"j" + gammahat"k",  betahat"i" + gammahat"j" + alphahat"k",   gammahat"i" + alphahat"j" + betahat"k"`


Select the correct option from the given alternatives:

If `bar"a", bar"b", bar"c"` are non-coplanar unit vectors such that `bar"a"xx (bar"b"xxbar"c") = (bar"b"+bar"c")/sqrt2`, then the angle between `bar"a"  "and"  bar"b"` is 


If `|bar"a"| = |bar"b"| = 1,  bar"a".bar"b" = 0, bar"a" + bar"b" + bar"c" = bar"0", "find"  |bar"c"|`.


Two sides of a parallelogram are `3hat"i" + 4hat"j" - 5hat"k"` and  `-2hat"j" + 7hat"k"`. Find the unit vectors parallel to the diagonals.


If `bar"OA" = bar"a" and bar"OB" = bar"b",` then show that the vector along the angle bisector of ∠AOB is given by `bar"d" = lambda(bar"a"/|bar"a"| + bar"b"/|bar"b"|).`


Express the vector `bar"a" = 5hat"i" - 2hat"j" + 5hat"k"` as a sum of two vectors such that one is parallel to the vector `bar"b" = 3hat"i" + hat"k"` and other is perpendicular to `bar"b"`.


Find the acute angle between the curves at their points of intersection, y = x2, y = x3.


Express `hat"i" + 4hat"j" - 4hat"k"` as the linear combination of the vectors `2hat"i" - hat"j" + 3hat"k", hat"i" - 2hat"j" + 4hat"k"` and `- hat"i" + 3hat"j" - 5hat"k"`.


Find the angle between the lines whose direction cosines are given by the equations 6mn - 2nl + 5lm = 0, 3l + m + 5n = 0.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a". bar"b" + bar"c"`


Find the volume of the parallelopiped spanned by the diagonals of the three faces of a cube of side a that meet at one vertex of the cube.


If the vectors `xhat"i" - 3hat"j" + 7hat"k" and hat"i" + "y"hat"j" - "z"hat"k"` are collinear then the value of `"xy"^2/"z"` is equal.


If the vectors `overlinea = 2hati - qhatj + 3hatk` and `overlineb = 4hati - 5hatj + 6hatk` are collinear, then the value of q is ______


For 0 < θ < π, if A = `[(costheta, -sintheta), (sintheta, costheta)]`, then ______ 


The angle between the vectors `hat"i" - hat"j"` and `hat"j" - hat"k"` is ______.


If `vec"a", vec"b", vec"c"` are unit vectors such that `vec"a" + vec"b" + vec"c"` = 0, then the value of `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` is ______.


If `vec"a"` is any non-zero vector, then `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` equals ______.


Classify the following measures as scalar and vector.

40°


Classify the following measures as scalar and vector.

20 m/s2


Classify the following as scalar and vector quantity.

Work done


If `veca ≠ vec(0), veca.vecb = veca.vecc, veca xx vecb = veca xx vecc`, then show that `vecb = vecc`.


Let `veca, vecb` and `vecc` be three unit vectors such that `veca xx (vecb xx vecc) = sqrt(3)/2 (vecb + vecc)`. If `vecb` is not parallel to `vecc`, then the angle between `veca` and `vecc` is


For given vectors, `veca = 2hati - hatj + 2hatk` and `vecb = - hati + hatj - hatk` find the unit vector in the direction of the vector `veca + vecb`.


If `veca` and `vecb` are two collinear vectors then which of the following are incorrect.


Find `|veca xx vecb|`, if `veca = hati - 7hatj + 7hatk` and  `vecb = 3hati - 2hatj + 2hatk`


Let the vectors `vec(a)` such `vec(b)` that `|veca|` = 3 and `|vecb| = sqrt(2)/3`, then `veca xx vecb` is a unit vector if the angle between `veca` and `vecb` is


In the triangle PQR, `bar(PQ)` = `2bara` and `bar(QR)` = `2barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


In the triangle PQR, `bb(bar(PQ) = 2  bara)` and `bb(bar(QR) = 2  barb)`. The mid-point of PR is M. Find the following vectors in terms of `bb(bara and barb)`.

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

Check whether the vectors `2hati + 2hatj +3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×