Advertisements
Advertisements
प्रश्न
Read the following passage:
An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. |
Based on the above information, answer the following questions:
- How many relations are possible from B to G? (1)
- Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
- Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
OR
A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)
उत्तर
- Number of possible relations from B `rightarrow` G
= `2^(n(B) xx n(G))`
= 23 × 2
= 26
= 64.
Every element of set B has two options to map in set G i.e., B1 can go to G1 and G2.
So, 2 ways (i.e., two functions).
∴ Total function = 2 × 2 × 2 = 8- R : B `rightarrow` B
R = {(x, y) : x and y are students of the same sex}
(b1, b1) ∈ R ...(Reflexive)
(b1, b2) ∈ R `\implies` (b2, b1) ∈ R ...(Symmetric)
If (b1, b2) ∈ R ∧ (b2, b3) ∈ R
`\implies` (b1, b3) ∈ R ...(Transitive)
`\implies` It is an equivalence relation.
OR
Given, B = {b1, b2, b3} and G = {g1, g2}
f = {(b1, g1), (b2, g2), (b3, g1)}
Since b1 and b3 both are related to same element g1.
So f is not bijective (one-one).
APPEARS IN
संबंधित प्रश्न
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.
Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.
Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.
Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.
Define an equivalence relation ?
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : | a2- b2 | < 8}. Write R as a set of ordered pairs.
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- The above-defined relation R is ____________.
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
The relation > (greater than) on the set of real numbers is
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?
The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is
A relation 'R' in a set 'A' is called reflexive, if
Define the relation R in the set N × N as follows:
For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.
Let R1 and R2 be two relations defined as follows :
R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and
R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______
If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.