हिंदी

Show that the Relation R Defined in the Set a of All Polygons as R = {(P1, P2): P1 and P2 Have Same Number of Sides}, is an Equivalence Relation. What is the Set of All Elements in a Related to the Right Angle Triangle T with Sides 3, 4 and 5? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the relation R defined in the set A of all polygons as R = {(P1P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

उत्तर

R = {(P1P2): P1 and P2 have same the number of sides}

R is reflexive since (P1P1) ∈ R as the same polygon has the same number of sides with itself.

Let (P1P2) ∈ R.

⇒ P1 and P have the same number of sides.

⇒ P2 and P1 have the same number of sides.

⇒ (P2P1) ∈ R

∴R is symmetric.

Now,

Let (P1P2), (P2P3) ∈ R.

⇒ P1 and P2 have the same number of sides. Also, P2 and P3 have the same number of sides.

⇒ P1 and P3 have the same number of sides.

⇒ (P1P3) ∈ R

∴R is transitive.

Hence, R is an equivalence relation.

The elements in A related to the right-angled triangle (T) with sides 3, 4, and 5 are those polygons which have 3 sides (since T is a polygon with 3 sides).

Hence, the set of all elements in A related to triangle T is the set of all triangles.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.1 | Q 13 | पृष्ठ ६

संबंधित प्रश्न

Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.


Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Let R be the relation in the set given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.


Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:

R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5


Let R be a relation defined on the set of natural numbers N as
R = {(xy) : x N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.


Give an example of a relation which is reflexive and symmetric but not transitive ?


Let A = {abc} and the relation R be defined on A as follows: R = {(aa), (bc), (ab)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.


Defines a relation on :
  x > y, x, y ∈  N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.


Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?


If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Define an equivalence relation ?


Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .


Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


Mark the correct alternative in the following question:

The relation S defined on the set R of all real number by the rule aSb if a  b is _______________ .


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The following defines a relation on N:
x + y = 10, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×